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Abstract. In this work, the normative framework of active inference is integrat-

ed with belief propagation for inverting a probabilistic causal model using data 

generated from planned interactions between a Bayesian modeling agent and a 

biological system. Thompson sampling of parameter distributions is used to es-

timate the free energy of the expected future when beliefs about beliefs are 

rolled over a planning horizon. Learning a probabilistic model for maximizing 

biomass production in the well-known Baker’s yeast example is used as an ex-

ample. The prior parameter distributions in the system model of a fed-batch cul-

tivation are updated as new observations are obtained. Planned action sequenc-

es aim to excite the yeast metabolism by introducing changes in the feed rate of 

two nutrients (glucose and nitrogen). Results obtained demonstrate that by max-

imizing the model evidence, the proposed approach constraints biological sys-

tem dynamics to relevant trajectories for improved parametric precision in the 

preferred region of physiological states that favor biomass productivity.  

Keywords: Active inference, Bayesian inference, Biological systems, Probabil-

istic modeling, Reinforcement learning. 

1   Introduction 

Even though is not yet accepted nor recognized, abstract (e. g., macroscopic or cyber-

netic) models used to describe the response of biological systems are too shallow to 

account for the full complexity of switching in metabolic pathways when responding 

to changes in their abiotic conditions [4]. A challenge in gathering informative data is 

how a causal probabilistic model can be learned from designed experiments given (i) 

the rich complexity of time-varying environmental conditions, and (ii) the circular 

dependence of model learning and information content of sampled data, which may 

lead to inaccurate predictions of a micro-organism response to environmental stimuli 

[10]. As most models of biological systems are not a veridical representation due to 

regulatory mechanisms in its metabolism, it is infeasible to achieve parametric preci-

sion comprehensively, let alone design optimally informative experiments for this 

objective [7, 8]. Probabilistic causal models are better prepared to deal with the sys-

tem-model structure mismatch and unobserved hidden states [2, 3]. In this work, we 

illustrate how ideas from active inference [9, 15] can be integrated with belief propa-

gation to unify goal-oriented and information-seeking objectives in modeling biologi-

cal systems using the variational free energy of the expected future over a sequence of 
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interactions between the modeler that modifies the abiotic conditions and the biologi-

cal system that respond to purposefully designed stimuli. Active inference replaces 

the value functions in reinforcement learning with functionals of (Bayesian) beliefs 

and modeler´s preferences, in the form of an expected (variational) free energy. To 

plan using beliefs about beliefs some short of sophistication is needed [5]. 

1.1   The Bayesian modeling agent-biological system interaction cycle 

In this work, learning of a probabilistic causal model is based on data gathered in a 

sequence of planed interactions between a Bayesian modeling agent and a biological 

system. The modeling agent has a priori belief about the causal response of the bio-

logical system to external stimuli as shown in Fig. 1. The received reward measures 

the goodness of the system response depending on the agent preferences. Based on its 

beliefs about the parameter distributions and model structure, including the hidden 

states that causally explain the expected observations, the agent only takes the first 

action of the planned sequence to maximize the information content of probable fu-

ture states in the most rewarded state trajectories. As soon as the system responds to 

the actions taken, beliefs about its behavior are first updated by the agent. Then, a 

new sequence of actions is designed to maximize information gain by rolling beliefs 

about beliefs into the future.  

The Bayesian modeling agent plans future interactions based on its beliefs about 

the counterfactual consequences of alternative actions for hidden physiological states 

and the updated beliefs (parameter distributions) resulting from distributions for hid-

den states in the simulated sequence of state transitions and predicted rewards. This 

recursive form of belief propagation using a probabilistic causal model of the biologi-

cal system implements effectively a deep tree search over course of actions and ex-

pected system response in future interactions to bias data gathering for model building 

in the most preferred states as measured by the rewards predicted using the model. 

Key to propagating beliefs about belief is efficient posterior sampling.  

Bayesian 
Modeling Agent

Biological 
system

Observation

Reward

Action

Belief 
rollouts

Actual loop

Action sequence

Belief propagation loop

 

Fig. 1. Bayesian modeling cycle based on counterfactual belief propagation. 
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2   Probabilistic causal models 

A probabilistic (causal) model of a biological system is defined by a joint probability 

distribution over the following set of stochastic variables: 

• x; y: the n x nt   hidden states time-series; the p x nt observations (sampled data), 

• u: the nu x nt   manipulated (controlled) inputs time-series, 

• ;: the n x 1 evolution parameters; the n x 1 observation parameters, 

• : the state noise precision (structural errors), 

• : the measurement noise precision (analytical and sensor calibration errors). 

From the sequence of interactions between the modeling agent and the biological sys-

tem under study, it is assumed that these variables follow the equations: 

      (hidden) state evolution, 

                  observation (response). 

       (1) 

where f (resp. g) is the first-principles model (observation model), and t (observa-

tion t) is the state (resp. measurement) modeling errors (noise). A probabilistic model 

m of a bioreactor is completed by specifying the (initial) Gaussian prior distributions 

for its parameters . Also, Gamma distribution priors are defined for the precision 

hyperparameters . Given these priors, the left part of Eq. (1) induces a (so-called 

semi-Markovian process) prior density on the trajectory of hidden states x. Similarly, 

the right part of Eq. (1) yields a likelihood function which measures how plausible an 

observation y is when the biological system responds to an environmental stimuli ut-1 

at time t. Uncertainties from noisy observations and model imperfections are thus 

taken explicitly into account by the probabilistic model. 

In the variational Bayesian framework, model identification (or inversion) entails the 

estimation of the marginal likelihood or evidence of a bioreactor model, that is a 

probabilistic description of the main (causal) metabolic mechanisms by which sam-

pled data are generated. Probabilistic Bayesian treatment of an experiment dataset 

makes full usage of prior assumptions regarding the statistical distributions for initial 

conditions, evolution/observation parameters and state/measurement noise [2, 3]. In-

verting a probabilistic model m requires approximating the conditional density 

 of the unknown hidden states and parameters  given a 

data set of sampled measurements y and computing the model evidence . Non-

linearities in the probabilistic model prevent exact analytical solutions to the model 

inversion problem which can approximately be solved using Bayesian variational 

approaches such as active inference.    

The plausibility of a model parameter vector  given a model struc-

ture m having a new dataset 𝒟 can be expressed by the Bayes´ Rule: 

                                                             (2)                                                                    
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As it is shown in Fig. 2, based on a new dataset 𝒟, a prior distribution for model pa-

rameters is update into a posterior distribution for . If the new dataset is highly in-

formative the posterior density is significantly changed due to the bias introduced. 

However, if the incoming data is not so surprising, the posterior update is much less 

significant. The key question is how purposefully excite the metabolic response of a 

biological system to gain the most from resulting data? 

 

 

Fig. 2. Posterior update of a parameter distribution upon new data and their surprise contents. 

One of the core problems of model inversion in a Bayesian setting is to approximate 

difficult-to-compute posterior probability densities for model parameters from their 

priors. In this work, for model inversion is carried out using Variational Inference [1]. 
Rather than resorting to sampling, the main idea behind variational inference is to use 

optimization. First, we posit a family of approximate densities  . Then, we try to 

find the member of that family that minimizes the Kullback-Leibler divergence or 

distance to the exact posterior distribution when new data y is accounted for by 

solving: 

                                                                       (3) 

                                                                 

Thus, we approximate the posterior with an optimized member of the family . 

Variational inference thus turns the inference problem into an optimization problem, 

and the reach of the family Q manages the complexity of this functional approxima-

tion of the posterior. One of the key ideas behind variational inference is to choose Q 

to be flexible enough to capture a density close to the exact posterior , but 

simple enough to be found by efficient optimization. 

 When inverting realistic probabilistic models of biological systems, nonlinearities 

in the likelihood function generally induce posterior densities that are not in the con-

jugate family of their priors. The Laplace, also known as mean-field, approximation is 

a useful approach, which can finesse this problem by reducing the set of sufficient 
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statistics of the approximate posterior density to its first two moments, mean and vari-

ance. This means that that both prior and approximate marginal posterior density are 

assumed to follow a Gaussian density, except for the precision hyperparameters  and 

, which are assumed to have Gamma posterior densities. The main assumption be-

hind the Laplace approximation is that model parameters are independent: 

                                                                                                                             (4) 

Thus, the variational Bayesian (VB) update of parameter posteriors reduce to a regu-

larized Gauss-Newton optimization scheme [2, 3]. This dramatically decreases the 

computational complexity of solving the optimization problem in Eq. 2. The second-

order moments of the approximate posterior densities are then simply related to the 

curvature of Kullback-Leibler distances between priors and candidate posteriors (dis-

tributions). 

3   Active inference 

Active inference is a normative theory that unifies observation, external stimulus, and 

model learning under a single imperative—the minimization of the variational free 

energy [5, 9]. More specifically, probabilistic model learning is posed as the maximi-

zation of a free energy lower bound  for the model evidence with respect to an 

approximate density : 

 (5) 

where  is the Kullback-Leibler divergence between two distributions and the ex-

pectation  is taken under the approximate posterior distribution q. As can be de-

duced from Eq. (2), maximizing the functional  with respect to q drives the Kull-

back-Leibler divergence between  and the exact posterior  to zero. The 

reader is referred to the work of Daunizeau et al. [2] for methodological details and 

the references therein described VBA Toolbox for variational Bayesian analysis. 

Active inference proposes that the modeler´s goal or intent are encoded in the proba-

bilistic model as prior preferences for favourable observations (e. g., higher biomass 

productivity or protein expression). Thus, active inference demands that parameter 

distributions in the probabilistic model are based on data sampled from favourable 

operating conditions. This can be achieved by means of online replanning of interac-

tion over a horizon aiming at minimizing the free energy of the expected future [9], 

which corresponds to the trajectory of hidden states that is expected to occur from 

applying the optimal sequence of actions (sampling times and manipulated inputs) 

that maximise the model evidence in the certain region of environmental conditions.  

Let  denote a sequence of variables through time, , and let define 

a policy as a sequence of actions . In probabilistic modeling of bio-

logical systems the specific aim is to minimize the free energy of the expected future 

, which is defined as: 

      =  
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   ;                         (6) 

where  models the probability distribution for future trajectories in a 

dynamic experiment under a given policy , whereas  defines the 

joint probability distribution for the most probable trajectory of hidden states, model 

parameters and preferred observations. Thus, when  is driven to zero, the policy  

becomes the (probabilistic) optimal policy of the modeling agent. Notice that by min-

imizing , the surprise  is also minimized, which implies that the 

Bayesian model evidence is maximized. 

Active inference´s main argument is that the modeler´s goal or intent should be en-

coded in the probabilistic model as a prior preference for desired observations (e. g., 

higher biomass productivity or protein expression). Thus, active inference demands 

that parameter distributions in the probabilistic model are based on data sampled from 

favourable physiological conditions.      

4   Belief propagation through posterior Thompson sampling 

Inspired by posterior (Thompson) sampling for multi-armed bandits [12, 13], a simple 

belief propagation algorithm which uses data from previous interactions to plan a se-

quence of future outcomes (observations and corresponding rewards) from optimized 

actions that maximize model evidence is proposed (see Fig. 3). At a given discrete 

time t, let´s assume a priori distributions  for model parameters. Using a rolling 

horizon H for belief propagation based on Thompson sampling to assess the effect of 

incorporating different realizations of simulation data, the estimated optimal action is 

taken and the priors for model parameters are updated at each time step. A reward 

function that accounts for the modeling agent preferences is used to bias data gather-

ing in this forward simulation rollouts. It is worth noting that through Thompson 

sampling, as beliefs are propagated forward, the state evolution and observation func-

tions  become deterministic maps from actions to hidden states and their corre-

sponding observations.  

At each time step t, the optimal action is chosen by solving an optimization problem 

for the expected look-ahead reward based on the predicted impact on the biased mod-

el evidence  of simulated data  for alternative 

stimuli in a compact set : 

                                                                                      (7) 

where  is a reward (or preference) function for observations and their underlying 

hidden states.  The predicted observation  and the action  are then used to gen-

erate the posterior distributions for model parameters   to be used at t+1. 

Thompson sampling is then applied to this simulated posterior and a new realization 

of model parameters is obtained and proceeds to next time step. The procedure is re-

peated until t=H. The main output from a belief propagation rollout is a sequence of 

optimized actions based on Thompson sampling of updated posteriors using simula-

tion data over the planning sequence. As can be expected, the goodness of the se-
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quence generated in a rollout depends on the value of the planning horizon H. Thus, 

to avoid significant sub-optimality losses only the initial part of the sequence is rele-

vant. Moreover, as each rollout can be characterized by its cumulative expected re-

ward for the actions in the sequence, it is advisable that for choosing the action that 

generates the most informative data, several rollouts must be simulated and then 

ranked them all based on the sequence of predicted rewards. Simulation of belief 

about beliefs rollouts based on Thompson sampling finesses the exploitation-

exploration dilemma in relation to prior preferences in a modeling agent that predicts 

the free energy of the expect future for a given course of action over a receding-

horizon H. 

 

Fig. 3. Propagating beliefs about beliefs using posterior Thompson sampling. 

5   Sophisticated active inference 

In this section, we describe an efficient implementation of the proposed objective 

function for online redesign of planned interactions with the biological system in the 

context of reinforcement learning [14]. To select actions for purposely biasing the 

model, we iteratively optimise a policy  at each time step t using different samples 

from the distributions of model parameters [5]. A pseudocode for the proposed algo-

rithm for using belief propagation in active inference is shown in Fig. 4. The internal 

loop has a forward rollout where the density  is increasingly con-

verted into a posterior density upon simulated data using a stagewise greedy redesign 

procedure based on Thompson sampling [12, 13] of the posterior distribution  

for model parameters. At each time step, an action is chosen by solving an optimiza-

tion problem for the expected look-ahead reward based on the predicted impact on the 

biased model evidence  of simulated data  for 

alternative replanning decisions in a compact set : 

Inputs: H, current , prior , state evolution and observation functions  

 For t = 1 to H 

          (Model parameter priors for rollout updates) 

              Thompson Sampling of the prior :  

    

                    Simulate state transition using  and predict    

                 Update rollout prior:  using  

               Infer next system state  for the optimal action . 

 End for 

Output:  rollout policy:  with its expexted cumulative reward   
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                                                                                      (8) 

 

 

Fig. 4. Sophisticated active inference algorithm for model learning. 

 

where  is a reward (or preference) function for observations and their underlying 

hidden states.  The predicted observation  and the action  are then used to gen-

erate the posterior distribution for model parameters  to be used at t+1. Thomp-

son sampling is again applied and, using Eq. (4), the action  is calculated and the 

corresponding simulated observation  is computed. This forward rollout finishes 

when  is computed and the kth policy  is completely defined. 

For each iteration of the outer loop, a different policy  is computed.  The generated 

sequences of planning actions are then ranked based on their corresponding cumula-

Inputs: T, K, , prior , state evolution and observation functions  

 For t = 1 to   

     Infer current state  using   

  For k = 1 to   

       

  While       (Forward Pass) 

Thompson Sampling of the prior :  

    

Simulate redesign using  and predict    

Update prior:  using  

Accumulate reward:        

    End while   

        Define the policy:  with its corresponding  

 End for 

              Rank policies , using   

         Select the best policy   with the highest  

         Interact with the system using only  and measure   at    

         Update prior:  using experimental data  

  End for 

Outputs: , , ,  
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tive rewards  over the planning horizon . From the top ranked policy , 

only the first action  is used for redesigning the sequence of future interactions and, 

at the next sampling time t+1 the observation  is obtained. Using experimental 

data , the joint posterior distribution  for the parameters of the proba-

bilistic model is updated using variational Bayesian inference (based on the Laplace 

approximation) and the master (external) loop begins re-estimating the optimal policy 

 from t+1 until the end of the planning horizon at time . 

6   Case study: Baker´s yeast production 

The macroscopic model proposed by Richelle et al. [11] for fed-batch baker's yeast 

production process in which the nitrogen and glucose consumptions are coordinated is 

used to test the sophisticated active inference algorithm in Fig. 4. The model includes 

a reaction in which the nitrogen and α-ketoglutarate are consumed to produce bio-

mass. Also, the inhibition effect on glucose consumption by the accumulation of α-

ketoglutarate is accounted for. The model has 15 parameters that define the reaction 

rates in biomass and ethanol production and consumption of glucose, nitrogen, and α-

ketoglutarate. The concentration of α-ketoglutarate is a hidden state which is inferred 

using the model.  The interested reader is referred to [11] for details. 

The actions which are applied in each agent-system interaction are the feeding rate 

profiles for glucose and nitrogen. The duration of each modelling experiment is fixed 

to 20 hours, bioreactor initial conditions are known, and its content is sampled every 

hour to measure the concentration of biomass, ethanol, glucose, and nitrogen. Sample 

processing time is assumed equal to 30 min, leaving a maximum of 30 min to com-

pute the redesign decision to the planned sequence of actions to be applied over the 

receding horizon. The parameter K in the algorithm (Fig. 4) is set to 10. It is worth 

noting that as the variance of parameter distributions is reduced the value of the hy-

per-parameter K can be reduced to advantage. 

The aim is to purposefully bias model identification towards operating conditions that 

maximize the total amount of biomass that can be obtained at the end of the cultiva-

tion. Thus, the reward function  is defined to achieve a steady increase in the bio-

mass concentration for consecutive samples. Results obtained are summarized in Fig. 

5 and Fig. 6. Notice that due to initial uncertainty (prior distributions), for the first 

experiment exploration is significantly high. Also note that final biomass concentra-

tions for modeling run #1 and # 2 in Table 3 are quite high despite they are not “one-

shot” optimized feeding profiles using the probabilistic model with the updated pa-

rameter distributions. After two modeling experiments, as shown in Table 2, the pa-

rameter distributions have been updated to make the probabilistic model biased to-

wards the most preferred region of system states [11], namely where biomass produc-

tion is higher. 

It is worth noting that the method bias data gathering in physiological states where 

nutrients are mainly used to produce biomass instead of ethanol which is a metabolite. 

Should production of ethanol (or expressing a given protein) were the objective this 
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will change the preference of the modeling agent. Accordingly, data gathering will be 

biased towards other physiological states.  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Glucose feeding rates 

 

 

 

 

 

 

 

 

 

 

 

(b). Nitrogen feeding rates 

 

(b) Nitrogen feeding rates 

Fig. 5. Substrate feeding profiles in run #1 and #2 
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Fig. 6. Biomass production in run #1 and #2. 

 

 

Table 1. Prior Normal distributions N(  2) of the model parameters   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Mean Variance 

Parameter       Units             

k1 gX/gG 0.5431 0.250 

k2 gX/gG 0.0612 0.020 

k3 gX/gE 0.8929 0.085 

k4 gE/gG 0.2647 0.080 

k5 gA/gX/gG 0.2589 0.080 

k6 gX/gN 1.0150 0.150 

Omax gG/gX/h 0.4445 0.125 

Gmax gG/gX/h 2.5364 0.200 

Nmax gN/gX/h 1.1903 0.150 

KG gG/L 0.1524 0.030 

KI gE/L 3.1817 0.050 

KN gN/L 2.9370 0.050 

KA gA/gX/L 9.0014 2.000 

KIA gA/gX/L 5.5981 0.500 

KIA2 gA/gX/L 5.5737 0.210 
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7   Concluding remarks 

A novel probabilistic method for modeling the dynamic behaviour of a biological 

system in the most preferred region of operating conditions is proposed. Based on 

simulation data and prior distributions, agent-system interaction sequences are rede-

signed online through active inference with belief propagation using Thompson sam-

pling. Reinforcement learning is used to maximize the Bayesian model evidence, that 

is, to minimize surprise by implementing simulation rollouts when propagating beliefs 

about beliefs related to posterior distributions of model parameters once variational 

Bayesian updates are carried out. 

An important advantage of the proposed approach is that it integrates the modeler´s 

preferences with goal-directed behaviour of biological systems from a cybernetic 

viewpoint using the free energy principle. In this setting, perception and action in 

biological systems minimize a free energy bound on Bayesian surprise. The free ener-

gy is thus an information-theoretic measure that bounds the current and the future 

expected statistical surprise, i.e., how unpredictable is a biological system under a 

given probabilistic model. 

The free energy of the expected future in Eq. 6 quantifies using the Kullback-Leibler 

(KL) divergence (i.e., the distance) between the approximate and the true posterior 

distributions of system responses to external stimuli. According to the free energy 

principle, the modeling agent then acts in such a way as to minimize a free energy 

bound on the surprise at future time steps, i.e., Bayesian surprise which, informally 

speaking, provides a quantification of the difference between the agent's predictions 

about the system expected behavior to stimuli and the observed system responses. 

 

 Table 2. Posterior distributions N(  2) for run #2 and run #3. 
 

       Posterior   Run #1 Posterior Run #2 

Parameter        Units                            

k1 gX/gG 0.6232 0.112 0.7012 0.010 

k2 gX/gG 0.0578 0.011 0.0851 0.006 

k3 gX/gE 0.8500 0.005 0.8091 0.002 

k4 gE/gG 0.2450 0.009 0.2350 0.002 

k5 gA/gX/gG 0.0189 0.005 0.2162 0.037 

k6 gX/gN 0.9733 0.088 0.8817 0.044 

Omax gG/gX/h 0.4210 0.039 0.4198 0.028 

Gmax gG/gX/h 2.6472 0.145 2.7116 0.009 

Nmax gN/gX/h 1.2279 0.067 1.2009 0.011 

KG gG/L 0.1208 0.025 0.0989 0.010 

KI gE/L 3.2011 0.443 2.9442 0.031 

KN gN/L 2.9674 0.632 3.3598 0.278 

KA gA/gX/L 9.4569 1.227 10.106 0.583 

KIA gA/gX/L 5.8919 0.389 6.2991 0.267 

KIA2 gA/gX/L 6.131 0.201 5.8404 0.113 
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Table 3. Biomass final concentration in optimization runs. 

Modeling Run # Biomass   [g/L] 

1 24.11 (Final conc.) 

2 32.64 (Final conc.) 

Richelle et al. 2014 [11] 32.00 (Exp. measurement) 
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