
Preliminary feasibility analysis of inner speech as
a control paradigm for brain-computer interfaces

Nicolás Nieto1,2,∗, Hugo L. Rufiner1 and Ruben Spies2
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Abstract. Brain Computer Interfaces (BCIs) are useful devices that
provide new ways of communication to people who have lost the capa-
bility of interacting with their environment. Although several paradigms
have resulted in large improvements in the construction of BCIs, quite
often they require great efforts from the patient or they are not able to
generate natural and efficient interfaces. In that scenario, inner speech
appears as a promising paradigm for tackling those problems. Neverthe-
less, the lack of publicly available databases largely precludes the analysis
and development of methods for using this paradigm. In this work we
use a recently released database to show that it is possible to classify
and differentiate inner speech signals from signals acquired within other
two well known paradigms. This is undoubtedly a first step in the search
and construction of an inner speech based BCI.
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1 Introduction

Spinal injuries, strokes, cerebral palsy, amyotrophic lateral sclerosis, among other
diseases, can interrupt the normal pathways that the brain uses for muscle con-
trol. For such patients, Brain Computer Interfaces (BCIs) provide an alternative
way of interaction with the environment, offering great benefits [28,12]. In a BCI,
the brain activity is usually measured by surface electroencephalography (EEG),
as it is a standard and noninvasive technique [21]. EEG provides signals with
good time resolution but with a poor spatial resolution and low signal-to-noise
ratio. Once the signals are obtained, they are typically classified by machine
learning techniques. These classifiers use the EEG signals to generate outputs
for controlling external devices (wheelchairs, computers, etc.)

The so called “inner speech” paradigm has been studied using EEG [3,8,26],
electrocorticography [24], functional magnetic resonance imaging and positron
emission tomography scan [10,25,11,20]. The potential advantages of using inner
speech as a control paradigm are clear, as it can generate more natural inter-
faces, allowing patients to execute an order, literally by just thinking about it.
Nevertheless, compared to other paradigms, inner speech involves more complex
neural networks of different cortical areas engaged in phonological and semantic
analysis, speech production and other processes [24,16,1].
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Although the understanding of inner speech has largely increased in the last
few years, there is still not enough evidence to support the conjecture that this
paradigm can in fact be used for efficiently controlling a BCI. The aim of this
work is to show that it is possible to classify and differentiate inner speech signals
from those acquired within other two well known paradigms. This is undoubtedly
a first step in the search and construction of an inner speech-based BCI.

2 Materials and Methods

2.1 Data description

Tasks and participants. For the experiments, the dataset presented in [23]
was used. This dataset contains EEG signals from ten healthy participants, all
right-handed and native Spanish speakers. The participants were requested to
perform three different conditions (paradigms): pronounced speech, inner speech
and visualized condition. The data were acquired with a BioSemi ActiveTwo
acquisition system of 128+8 channels at 1024 Hz. The number of trials varied
among subjects. A more detailed description of the acquisition procedures and
the number of trials for each subject can be found in [23].

EEG processing. In [23], the data were filtered between 0.5 and 100 Hz, and
a notch filter was applied at 50 Hz. An Independent Component Analysis was
applied in order to detect and remove noisy components, mainly contaminated
with ocular and muscular artifacts. Finally, the continuous recording were split
in 2.5 seconds trials. In this work, only the final two seconds of each trial were
used to avoid possible evoked potentials produced by the stimulation protocol.

A similar approach to the Filter Bank Common Spatial Pattern (FBCSP)
proposed in [2] was used for generating the spectral and spatial features. The
band-pass filter frequencies used, in Hz, were: [0.5, 4.0], [4.0, 8.0], [8.0, 12.0],
[12.0, 20.0], [20.0, 30.0] and [30.0, 45.0]. From each band, a Common Spatial Pat-
tern filter was learned and the average power in the first six spatial components
were calculated. These six features for each one of the six bands generated the
36-dimensional feature vector used for classification. Finally, each feature was
scaled between 0 and 1. A twenty-fold cross-validation was used, splitting the
data in 80% and 20% for training and testing, respectively, for each subject.

2.2 Classification algorithm

Extreme Learning Machines. Extreme Learning Machines (ELMs) are single
hidden layer neural networks, originally proposed in [15,14,13]. ELMs have been
widely used in EEG signals classification problems [6,5,19,7,29,18,27,17]. The
training process of an ELM consists of two steps. First, the matrix of input
weights W and the vector of bias weights b are randomly set as independent
realizations, usually of a uniform distribution. The second step consists of finding
an appropriate output weight β. This is done by means of the Moore-Penrose
generalized inverse [9]. One of the most appealing aspects of the ELMs is that
they only have one hyperparameter that must be calibrated: the number of
hidden nodes M . In this work, we use the regularized version of ELM formulated
in [4], setting the regularization parameter λ = 1. The regularized ELM does
not suffer from overfitting, which commonly appears when the number of hidden
nodes is close to the number of training examples.
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Fig. 1. Violin plots for the first experiment. Test accuracy distribution obtained
with real and random labels, for each subject. Statistical significance according to
Mann–Whitney-Wilcoxon test is marked with “ * ” (p ≤ 0.001).

Relevance-Based Pruning. ELMs usually contain nodes that ought to be
pruned out from the network in order to improve classification accuracy and to
generate a more compact network. Here, the Relevance-Based Pruning (RBP)
method proposed in [22] was used, as it gets rid of the need for computational
expensive retraining while searching for the optimal number of neurons.

For finding the hyperparameter M , a three-fold cross-validation was per-
formed within the training set, splitting the training data in 80% and 20% for
train and validation subsets, respectively. In each fold, ten different random ini-
tializations of the parameter vectors W and b were generated. For each initializa-
tion in each validation fold, a grid search between 1000 and 50, with decremental
steps of 50 nodes, was used to find the minimum number of nodes that maximizes
the validation accuracy. Then, M was set as the average of the best number of
hidden nodes obtained in each search. Once the appropriate number of nodes
was obtained, the FBCSP and the ELM were trained over the whole training set
and the testing accuracy was computed for each fold.

Finally, the same experiment was performed randomizing the condition label
of the trials, allowing the comparison of the accuracy distribution obtained with
the real and the randomized labels.

3 Results
In the first experiment, all the available trials in the inner speech and the visual-
ized conditions were used, for each subject. The distribution of the test accuracy
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Fig. 2. Violin plots for the second experiment. Test accuracy distribution obtained
with real and random labels, for each subject Statistical significance according to
Mann–Whitney-Wilcoxon test is marked with “ * ” (p ≤ 0.001).

with the real and the randomized labels for the 20 folds is shown in Figure 1. A
Mann–Whitney–Wilcoxon two-sided test was performed between the accuracy
obtained with each kind of label. The significance level was set to 0.001 and, for
all subjects, significant differences were found.

For the second experiment, the inner speech and the pronounced speech
trials were used. The distribution of the test accuracy with the real and the
randomized labels for the 20 folds is shown in Figure 2. The same statistical test
was performed and significant differences were found for all subjects. Moreover,
the accuracy obtained in this experiment is consistently higher than the one
obtained in the first experiment.

4 Conclusions
In an effort to substantiate the feasibility of an inner speech-based BCI, a com-
parison between conditions was made, showing encouraging results. This com-
parison allows us to state beyond any reasonable doubt that inner speech is
clearly distinguishable from the other two examined conditions. Moreover, the
brain mechanisms that generate each condition can be recognized by means of the
EEG signal analysis. This can be thought of as a first milestone in the continuous
working efforts for the construction of a more natural BCI. Needless to say, much
further work has to be done to separate different classes within each condition. To
encourage reproducible science, the code used in this work is publicly available
at https://github.com/N-Nieto/Feasibility_Analysis_Inner_Speech.
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