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Abstract. Modern Natural Language Processing (NLP) models can
achieve great results resolving different types of linguistic tasks. This
is possible thanks to a high volume of internal parametersthat are opti-
mized during the training phase. They allow to model high-level linguistic
properties. For example, LSTM-based language models have the ability
to find long-term dependencies between words on a text, and use them to
make predictions about upcoming words. Nevertheless, their complexity
makes it hard to understand which features they use to generate predic-
tions.
The neurolinguistic field faces a similar issue when studying how our
brain processes language. For example, every adult reader has the ability
to understand long texts and to make predictions of upcoming words.
Nevertheless, our understanding on how these predictions are driven is
limited. During the last decades, the study of eye movements during
reading have shed some light on this topic, finding a relation between
the time spent on a word (gaze duration) and its processing cost.
Here, we aim to understand how LSTM-based models predict future
words and these predictions relate with human predictions, fitting sta-
tistical models commonly used in the neurolinguistic field with gaze dura-
tion as the dependent variable. We found that an AWD-LSTM Language
Model can partially model eye movements, with high overlap with both
human-Predictability and lexical frequency. Interestingly, this last over-
lap is seen to depend on the training corpus, being lower when the model
is fine-tuned with a corpus similar to the one used for testing.

Keywords: LSTM · Eye Movements · Linear Mixed Models.

1 Introduction

The Natural Language Processing (NLP) field has witnessed a rapid evolution
during the last years. This evolution has allowed to achieve the resolution of a
great number of computational-linguistics tasks. Part of the advances performed
in the last decade was made by the use of Long Short-Term Memory models,
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firstly introduced in 1997 [8] and popularised some years ago after beating several
competitions [18, 6, 17]. The main advantage of this type of Recurrent Neural
Network (RNN) is the possibility to retain context information through long
sequences of words. Such property is achieved by the use of forget gates, that
solves the problem of the vanishing gradient.

Nevertheless, the advantage of using these complex models turns to be an
issue when trying to understand how these networks make predictions and which
mechanisms they use. For example, the high number of internal parameters that
are optimized during the training phase makes it impossible to perform feature
importance analyses.

In the Psycholinguistic field brain mechanisms involved in natural read are
studied by relating word properties with behavioural and physiological data
acquired from readers. For example, the Eye Tracking technique is based on
recording the position of the reader’s eyes on a screen during text presentation
[13, 20, 15]. With this information, the time expended by the reader’s eyes on each
word (i.e., Gaze Duration –GD–) is analysed as a reflection of their processing
cost. This variable is known to correlate with word properties like word length,
lexical frequency, position in the sentence or text, and Predictability, among
others [15, 14, 3]. Nowadays, these analyses are performed using Linear Mixed
Models (LMM), that allows to understand how all these word properties relate
with GD taking into account the variance introduced by subjects or the selected
material for the experiment (random effects). Thus, by doing this type of analyses
it is possible to understand which text features are used by our brains to process
information.

Most of the those variables that correlates with GD can be easily estimated
from the text or from an independent corpus. But the Predictability, that is
defined as the probability of knowing a word before reading it, is a subjective
variable. It is usually assessed by performing an experiment (named cloze-task)
where a lot of participants are asked to answer the most probable word given an
incomplete context [21]. As a consequence, Predictability is a hard and expensive
variable to estimate.

Researchers had made several attempts to model it using simple computa-
tional models but, until now, they had not reached conclusive results [19, 9, 3, 10,
1]. In 2008, Ong and Kliegl [19] analysed how the conditional co-occurence prob-
ability (CCP) of a word given its context, measured by their frequency on inter-
net search engines (Google, Yahoo!, MSN), and replaced the cloze-Predictability
in Eye Movements models. They found that CCP acts like lexical frequency
in predicting fixation durations. More recently, Hofmann and colleagues [9, 10]
used NLP algorithms for next-word predictions. In these studies they trained
N-grams, Recurrent Neural Networks, and Topic Models (LDA) with Wikipedia
and movie subtitles, adding the resulting probabilities to statistical models with
Eye Movement and electrophysiological variables as dependent variables. Af-
ter analysing how much variance these probabilities account for in each model
they conclude that computational algorithms can explain these human-based
variables better than the original cloze-Predictability. But, they did not anal-
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ysed how good these computer-based-Predictabilities are in replacing the cloze-
Predictability. Finally, Algan [1] showed how a LSTM-based Predictability cor-
relates with cloze-Predictability in Turkish.

In 2020 Bianchi and colleagues [3] showed that N-gram probabilities and
semantic similarities from different distributional semantics algorithms (LSA,
word2vec, FastText) can partially replace the cloze-Predictability on Linear
Mixed Models (LMM) using the GD as the dependent Variable. In this study
they analysed how much variance was left for the cloze-Predictability to explain
the GD on the residuals of the LMM fitted with computational-Predictabilities.
As far as we know, this is the only precedent of this type of analysis performed
in Spanish.

Modelling Predictability will not only ease the experiments, but will also al-
low a better understanding of the human brain predictions. More importantly,
nowadays we face the opportunity to understand both brain and RNN predic-
tions by exploring their relationship. And fortunately, Psycholinguistics tools
can help with this task.

In the present work, we aim to implement the AWD-LSTM model [17] to
comprehend how predictions are performed, by analysing how they relate with
GD and other word properties. In order to compare with previous results, we
use an available corpus of short stories with Gaze Duration and Predictability
measured for each word.

2 Methods

2.1 Eye movements

Eye movements were recorded from thirty-six native Spanish readers with nor-
mal or correct-to-normal vision. Participants read eight stories from the Buenos
Aires Corpus [14] and gaze position was recorded with a video-based eye tracker
(EyeLink 1000 from SR research). This data is publicly available from Bianchi
et al. [3]. Then, gaze position was used to calculate the First Pass Reading Time
or Gaze Duration (GD) on each word. GD is defined as the total time spent
on a word before leaving it for the first time, i.e., the addition of all fixations
in a word during the first pass, without counting future refixations. This eye
movement variable will be use as the dependent variable in the statistic models
used in this study.

2.2 Cloze Task

The cloze task is performed by presenting uncompleted texts to participants that
have to answer the next most probable word for that context. The corpus from
Bianchi et al. comprises cloze-Predictability (i.e., the probability of correctly
guessing each word in a cloze task) from more than 1000 participants (16 ± 8
per words) collected online [3]. It was performed using a custom-made web page
where participants logged-in to find one of the eight selected stories randomly
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assigned. After finishing a story participants were allowed to close the experiment
or to continue with a new randomly assigned text. Participants that closed the
experiment could return to following stories at any moment. This data is publicly
available from Bianchi et al. [3].

2.3 AWD-LSTM predictability

The AWD-LSTM model trained to get the next-word probability (from now
LSTM-Predictability) consisted of three stacked LSTMs layers with 400, 1152
and 400 dimensions respectively, and multiple dropout layers, as described in
[17]. Both in the input and the output layers, each word was represented as
a 400 dimensions embedding. This model was trained on a corpus taken from
Spanish Wikipedia, with a total of 444,571 files and 2,751,415 tokens. It was
then fine-tuned using a small corpus of 2,081 Spanish books and 535,068 tokens
[3]. Results from the trained-only and the trained-and-fine-tuned models will
be analysed separately. Both models were trained on 10 epochs, using a One-
Cycle policy with a maximum learning rate of 0.002. The fine-tuning phase was
performed in two steps. Firstly, only the encoder layer was tuned, using two
epochs (max learning rate = 0.026 ). Secondly, all the parameters were tuned,
using eight epochs (max learning rate = 0.0026 ). These models were used to
perform next-word prediction for each word from the story corpus used on the
Cloze-Task experiment previously presented. This data is publicly available at
http://reading.liaa.dc.uba.ar/.

2.4 Statistical analysis

The logit of Predictability measures (both cloze and computational) will be used
as co-variables in successive Linear Mixed Models (LMM) with Log-transformed
Gaze Duration (GD) as dependent variable. LMMs also include a set of pre-
viously described co-variables (launch position, the inverse of the word length,
the logarithm of lexical frequency, their interaction, and the position in the line,
the text, and the sentence). Subject and text identifiers, and the fixated word as
string, were used as random effects. Text variables and the results for the Ngram
model, was publicly available by Bianchi et al. [3]. Linear Mixed Models have
no need of hyperparameters to set or optimise [2].

The outputs of LMM are the estimates of the slopes and their errors (SD) for
each of the fitted fixed factors. Then, t-values are calculated as the ratio between
each slope and its SD. These values represent how far away from zero the slopes
are. As our models are fitted with a high number of instances, the distributions of
used co-variables can be considered as normal, and thus, absolute t-values larger
than 2.0 are considered significant with α < 0.05 [4]. Each significant effect
implies a linear relation between that covariable and the dependent variable.
Since the estimate of the slope of a LMM co-variable depend on its scale, and
each estimation of Predictability has a different range of values, we based our
analyses mostly on the effect significance and t-values, which are standardized.

ASAI, Simposio Argentino de Inteligencia Artificial

50JAIIO - ASAI - ISSN: 2451-7585 - Página 18



LSTM-based Language Models and human Eye Movements 5

To analyse how each computer-Predictability mimics the cloze-Predictability,
residuals of the corresponding LMM will be analysed. That is, after fitting a
LMM with a computer-Predictability as co-variable, residuals of the fixed effects
will be used in a new LMM with cloze-Predictability as the only fixed effect,
conserving the random structure. For this procedure, we used the remef function
[11] implementation for R.

We used the Akaike Information Criterion (AIC) to compare between differ-
ent hierarchically built models on the same data. This estimator is calculated as
the log likelihood of the model, compensated by the number of fixed effects [24].
The smaller it gets, the better the model to explain the data, compensating the
number of variables to avoid overfitting.

3 Results

A series of LMMs with different combinations of co-variables were fitted to anal-
yse how the AWD-LSTM model mimic the cloze-Predictability. The baseline
model (Fig. 1A, M0) comprised a set of previously described co-variables: launch
position, the inverse word length, the log lexical frequency, and their interac-
tion, and the position in the line, the text and the sentence. They all showed
significant effects as expected from previous studies [14, 3]. Subsequently, the
cloze-Predictability was added in a subsequent model (Fig. 1A, M1), showing a
clear negative effect on GD. The addition of this co-variable generated negligible
changes on the co-variables effects of the baseline model.

Results from two AWD-LSTM models were added as co-variables in inde-
pendent LMMs (LSTM-Predictability). Firstly, we used the output of a LSTM
model trained only with a Spanish Wikipedia corpus, a big but no specific corpus
for the task (Fig. 1A, M2). The t-value of Wikipedia-Only LSTM-Predictability
on the LMM (t = −14.97) was similar to the cloze-Predictability (t = −16.23).
Additionally, some co-variables from the baseline model showed changes on their
effects, particularly the lexical frequency.

Going one step further, we can compare not only the amount of variance
explained by the covariables, but also if it is the same portion of it. Then,
to observe if the cloze-Predictability can be explained by the results from this
LSTM, the residuals of the LMM (M2 Wiki-Only) were fitted in a new LMM with
cloze-Predictability as the only fixed effect (Residuals + cloze-Predictability).
This analysis showed that the effect of human Predictability remains significant
(t = −11.63, Fig. 1B, M2). This implies there is still variance associated with
cloze-Predictability left after fitting the model with the LSTM results. That
is, AWD-LSTM trained with a Wikipedia corpus can only partially model the
cloze-Predictability effect on Gaze Duration. Moreover, the drop in the frequency
effect significance shows that a part of its effect comes from lexical frequency.

Secondly, the output of an AWD-LSTM model trained with Spanish Wikipedia
and fine-tuned with a corpus of stories was included as a co-variable (Fig.
1A, M3). Its t-value on the LMM was almost the same as cloze-Predictability
(t = −16.76). Contrary to the observed result for the M2, the frequency ef-
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fect remained significant, although largely decreased. Furthermore, the cloze-
Predictability effect on the residuals of the LMM in M3 was smaller than in M2
(t = −9.87, Fig. 1B, M3), suggesting that the fine-tuning improved the LSTM
performance.

These effects also have an impact on the goodness-of-fit of the fitted LMMs,
estimated with the Akaike Information Criterion (AIC) for each model relative
to M0 and M1 (Fig. 1C). In particular, M2 showed an increase on the absolute
AIC relative to M0 and a decrease relative to M1. This indicates a better fit
than the baseline model, but worst than the Cloze Model (M1). Meanwhile, M3
showed a slight improvement on the overall fitting relative to M1.

Fig. 1. A) t-values from 4 LMMs with different set of co-variables. M0: baseline mod-
els. M1: baseline model and Cloze-Predictability variable. M2: baseline model and
LSTM-Predictability trained only with Wikipedia. M3: baseline model and LSTM-
Predictability trained with Wikipedia and fine-tuned with a story corpus. B) t-values
for the cloze-Predictability effect on a Linear Mixed Model fitted on the residuals of
each of models on A. C) AIC values for each of the fitted models on A relative to the
M0 AIC.

Bianchi et al. [3] explored the output of a 4-gram model as co-variable in
the same corpus, showing significant effects on the LMM, also with a decrease
in the frequency effect (Fig. 2A, M4). The addition of the LSTM-Predictability
from M3 (fine-tuned) also had an impact on the LMM (Fig. 2A, M5), measured
both in the co-variable (t = 6.11) and in the increase of the absolute AIC value
(Fig. 2C). Finally, there was a significant effect of cloze-Predictability when
fitting the residuals of the LMMs (Fig. 2B, M5). This suggests that the effect
of cloze-Predictability on Gaze Duration cannot be fully explained by these
computational models.
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Fig. 2. A) t-values from 2 more LMMs with different set of co-variables. M0: baseline
models. M4: baseline model and Ngram model from [3], M5: baseline model, Ngram
model, and LSTM-Predictability from the fine-tuned model. B) t-values for the cloze-
Predictability effect on a Linear Mixed Model fitted on the residuals of each of models
on A. C) AIC values for each of the fitted models on A relative to the M0 AIC.

4 Conclusions

LSTM networks have allowed great advances in Natural Language Processing
tasks. Their large number of internal parameters and their internal architecture
that avoids the problem of the vanishing and exploding gradients, allow them
to learn complex interactions while keeping context information. But, at the
same time, it generates highly opaque models when trying to understand what
features are used to abstract the language. In the present work we explored how
a LSTM network models natural language using its output to mimic a human-
based linguistic variable. Cloze-Predictability is a commonly used variable in
psycholinguistic research when studying how our brain process language. This
variable is known to correlates with behavioural (e.g. Fixation Duration) [15] and
electrophysiological metrics (e.g. scalp potentials) [16]. For this study we replaced
it with the LSTM-Predictability on Linear Mixed Models (LMM), statistical
models that are used to understand brain processes.

Using a fraction of the Spanish Wikipedia, we trained a LSTM model (trained-
only). This model was then fine-tuned with a small corpus of narrative texts.
Both models were used to estimate LSTM-Predictabilities on a set of 8 stories,
previously used by Bianchi et al. [3] for a similar analysis. LSTM-Predictabilities
were used as co-variables in independent LMM with other linguistic proper-
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ties and the Gaze Duration as dependent variable. Predictabilities from both
the trained-only and the fine-tuned models showed significant effects, overlap
with the cloze-Predictability, and an improvement on the LMM goodness of fit
(measured with the AIC) relative to baseline. But, on the trained-only model
there was a loss of the lexical frequency effect, becoming non-significant. This
highlights that, on the one side, to achieve a good replacement of the cloze-
Predictability it is important to consider training or fine-tuning the compu-
tational model on a corpus similar to the tested one. A general corpus, like
Wikipedia, will lead to perform predictions based mostly on word Frequency.
On the other side, this shows that a computational-Predictability generating a
better goodness of fit than the original cloze-Predictability does not imply that
the former one is better for explaining brain processes underlying predictions.

In this line, future work must be aimed to improve the LSTM-Predictability
based on AWD-LSTM and other LSTM architectures, experimenting with dif-
ferent parameters on the training and testing phases. First, using a larger cor-
pus for the specific fine-tuning may result in a better replacement of the cloze-
Predictability, allowing to further explore how LSTM predictions are performed.
Secondly, experimenting with the amount of information used by the LSTM to
predict future words would give more insight on how long dependencies are used
by the model and, also, by the brain. Moreover, these analyses could be extended
to other more modern models, like transformers based models. In order to do
so, it is important to take into account the difficulty and cost of their training.

Finally, aside of how good AWD-LSTM could be on predicting upcoming
words, it only partially explained the effect of Predictability on the cognitive
processing of words. Moreover, it had a large impact on the frequency effect,
something that is not present on the classical cloze-Predictability effect. Thus,
to predict future words, LSTM seems to rely on the lexical frequency more than
humans. This overlap with the frequency effect was previously observed for a
Ngram model. The comparison between the AWD-LSTM model presented here
and the Ngram model implemented by Bianchi and collaborators [3] showed
that they explained different aspects of the cloze-Predictability, with some de-
gree of overlapping. Thus, the comparison with simpler and more transparent
models may also serve as a way to understand complex models, like LSTMs. De-
spite the N-gram model can be improved, for example adding information about
grammatical properties of words [5], the text processing needed for this (like
Part-of-Speech tagging) is highly expensive and not robust, while modern NLP
algorithms, like AWD-LSTM, can infer this information implicitly. Additionally,
algorithms based on neural networks have more hyperparameters (embedding
size, number of layers, etc.) that were not explored in the present study and
may allow future improvements.

This work is another step in the dialogue between NLP and Neuroscience,
using cognitive and physiological measures to understand NLP and vice versa,
that will boost both fields [23, 7, 12, 22].
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