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Abstract. In this paper, we present a tool for possibilistic logic pro-
gramming. 1 This tool is a desktop-based, stand-alone application that
assists a user in creating, editing and querying a possibly inconsistent
possibilistic program. The tool computes all the arguments emerging
from the program, the grounded extension based on Dung-style seman-
tics, and it is capable of showing arguments and grounded extensions
graphically. The language for programs is enriched with pragmas for al-
lowing the user to configure labels for necessity degrees, deciding if using
transposes of strict rules, performing consistency checks within argu-
ments, and appeal to the use of accrual of rules for building arguments.
We describe its usage, architectural elements and we also provide exper-
imental evaluation of its performance.

Keywords: Possibilistic logic programming · argumentation semantics
· knowledge representation · knowledge-based systems · Artificial Intel-
ligence

1 Introduction

Computational Argumentation has been a relevant research area within Artifi-
cial Intelligence during at least the last twenty years [3, 7, 15]. Argumentation al-
lows for deciding between contradictory claims known as arguments. In abstract
argumentation, the interior of arguments are inaccessible while in structured
argumentation, the structure of arguments is accessible and usually made by
the derivation of a conclusion from facts or presumptions using defeasible rules.
Two arguments in disagreement attack each other but the stronger argument
is said to defeat the weaker one. If the attack is made into the final conclusion

1 A demo of the tool can be watched online at https://youtu.be/joajw2hfkZg.
For reproducing the results reported here, an executable JAR file along
with the examples shown here are included in the Github repository
sergio-alejandro-gomez/argumentative-engine.

ASAI, Simposio Argentino de Inteligencia Artificial

50JAIIO - ASAI - ISSN: 2451-7585 - Página 25



of the argument, then the attack is said to be direct but if the argument is at-
tacked in one of its assumptions, the attack is considered indirect. In abstract
argumentation, argument strength is defined by a binary relation. Instead, in
structured argumentation, the criteria for deciding argument strength require
analyzing the interior of arguments and include generalized specificity, weakest
or last link, among others. Once the attack relationship is defined and the at-
tacks between pair of arguments are computed, an argumentation framework
resembling a directed graph is induced. From this directed graph, the truths
(i.e. the accepted arguments) of the system have to be discovered. The set of
accepted arguments is called an extension. There are several kinds of extensions
considering that opposing conclusions can exist (e.g. allowing for credulous or
brave reasoning) or only consistency is required (typically in skeptical contexts
that are sometimes required). Another desirable trait of reasoning in argumen-
tation is the possibility of modeling accrual of arguments where given different
arguments supporting the same conclusion, their accrual allows to accumulate
their strength [14].

Implementation of argumentation systems is an important research topic
(see [1, 4, 6, 13] and references therein). Applications of these implementations
range from desktop and web-based systems for both structured and abstract
argumentation systems, tools for teaching argumentation in education institu-
tions and decision-making in knowledge-based systems. Several principles of im-
plementation have arisen during the last years that include: (i) a digraph of
arguments for abstract argumentation where vertices are arguments and edges
model an opposition relation between arguments that arises from the interaction
of structured arguments; (ii) implementations have to support a certain level of
generality allowing for the computation of several argumentation semantics, and
(iii) implementations have to provide a sufficient level of efficiency to deal with
the high intrinsic complexity of the problems at hand [6].

In this paper, we report on the advances we have made on the implementa-
tion of a Java-based system that uses structured arguments to represent claims
based on the language of possibilistic logic programming [2]. Our language al-
lows to represent knowledge as rules with their respective weight (a.k.a. neces-
sity degrees) noted as real numbers between 0 and 1, pragmas for defining labels
(symbolic constants for representing rule weights), and for selecting if trans-
poses of strict rules, and accrual of arguments should be used when computing
the grounded extension of the argumentation graph induced from the program,
thus customizing the user experience. In its current implementation status, our
system includes computing arguments based on weakest-link, ability to use trans-
poses of rules, accrual of arguments and grounded semantics. It also allows for
the visual presentation of arguments and argumentation graphs, and an IDE
for programming. We perform an experimental evaluation showing the behavior
of our tool in the presence of increasing demands. We think that the results
presented in this work can be useful to developers of knowledge-based systems
and to teachers of symbolic artificial intelligence, particularly of argumentation
systems.
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The rest of this paper is structured as follows. In Sect. 2, we briefly explain
reasoning in argumentation frameworks with structured arguments based on
possibilistic defeasible logic programming. In Sect. 3, we describe the status of
our prototype implementation for the reasoning framework presented discussing
its current functionalities, the possible customizations allowed to the user and
an empirical evaluation of its behavior with both arguments and linear argu-
mentation lines of increasing size. In Sect. 4, we review related work. Finally, in
Sect. 5, we conclude and discuss perspectives of future work.

2 Dung-Style Structured Possibilistic Argumentation
with Accrual

Here, we briefly describe the logical formalism underlying the implementation
of our system using a running example that relates the theory with its practical
application.

2.1 Dung-Style Abstract Argumentation

Abstract argumentation frameworks do not presuppose any internal structure of
arguments, thus considering only the interactions of arguments by means of an
attack relation between arguments [18]. An abstract argumentation framework
AF is a pair (Arg,→) where Arg is a set of arguments and → is a relation of
Arg into Arg representing the attack between arguments. In this work, we will
consider only finitary argumentation systems (i.e. argument systems with a finite
number of arguments). Abstract argumentation frameworks can be concisely
represented by directed graphs, where arguments are represented as nodes and
edges model the attack relation.

Example 1. Consider the argumentation framework AF1 = (Arg,→) where
Arg = {A6,A16,A19,A20} and→= {(A16,A19), (A16,A20), (A21,A16), (A21,A6)}.
The framework is shown graphically in Fig. 1.

A19 A20

A16

A21

A6

Fig. 1. Abstract argumentation framework presented in Ex. 1

Semantics are usually given to abstract argumentation frameworks by means
of extensions that are subsets that give some coherent view on the underlying
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argumentation framework. In this work, we will only reason under grounded
semantics. Let AF = (Arg,→) be an argumentation framework. An extension
E ⊆ Arg is conflict-free iff there are no A,B ∈ E with A → B. An argument
A ∈ Arg is acceptable with respect to an extension E ⊆ Arg iff for every
B ∈ Arg with B → A there is an A′ ∈ E with A′ → B. An extension E ⊆ Arg is
admissible iff it is conflict free and all A ∈ E are acceptable with respect to E.
An extension E ⊆ Arg is complete iff it is admissible and there is no A ∈ Arg\E
that is acceptable with respect to E. An extension E ⊆ Arg is grounded iff it is
complete and E is minimal with respect to set inclusion.

The intuition behind admissibility is that an argument can only be accepted if
there are no attackers that are accepted and if an argument is not accepted then
there has to be an acceptable argument attacking it. The idea underlying the
completeness property is that all acceptable arguments should be accepted. The
grounded extension is the minimal set of acceptable arguments and is uniquely
determined. It can be computed as follows: first, all arguments that have no
attackers are added to the empty extension E and those arguments and all
arguments that are attacked by one of these arguments are removed from the
framework; then the process is repeated; if one obtains a framework where there
are no unattacked arguments, the remaining arguments are also removed.

Example 2. Consider again the argumentation framework AF1 presented in
Ex. 1. The grounded extension E of AF1 includes the arguments A19,A20,A21.
Therefore these arguments are labeled as IN while the arguments A6 and A16

are labeled as OUT.

Our application abide to this approach but considering structured arguments
based on the P-DeLP language, as introduced next.

2.2 Possibilistic Defeasible Logic Programming (P-DeLP)

The P-DeLP [2] language L is defined from a set of ground fuzzy atoms (fuzzy
propositional variables) {p, q, . . .} together with the connectives {∼,∧,←}. The
symbol ∼ stands for negation. A literal L ∈ L is a ground (fuzzy) atom ∼ q,
where q is a ground (fuzzy) propositional variable. A rule in L is a formula of
the form Q← L1 ∧ . . . ∧ Ln, where Q,L1, . . . , Ln are literals in L. When n = 0,
the formula Q ← is called a fact. The term goal will refer to any literal Q ∈ L.
Facts, rules and goals are the well-formed formulas in L. A certainty-weighted
clause, or simply weighted clause, is a pair (ϕ, α), where ϕ is a formula in L and
α ∈ [0, 1] expresses a lower bound for the certainty of ϕ in terms of a necessity
measure. The proof method for P-DeLP formulas, written `, is defined based
on the generalized modus ponens rule, that from (L0 ← L1 ∧ . . . ∧ Lk, γ) and
(L1, β1), . . . , (Lk, βk) allows to infer (L0,min(γ, β1, . . . , βk)), which is a particular
instance of the possibilistic resolution rule, and which provides the non-fuzzy
fragment of P-DeLP with a complete calculus for determining the maximum
degree of possibilistic entailment for weighted literals.

In P-DeLP certain and uncertain clauses can be distinguished. A clause
(ϕ, α) is referred as certain if α = 1 and uncertain otherwise. A set of clauses
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Γ is deemed as contradictory, denoted Γ ` ⊥, when Γ ` (q, α) and Γ ` (∼
q, β), with α > 0 and β > 0, for some atom in L. A P-DeLP program is a
set of weighted rules and facts in L in which certain and uncertain information
is distinguished. As an additional requirement, certain knowledge is required
to be non-contradictory. A P-DeLP program P (or just program P) is a pair
(Π,∆), where Π is a non-contradictory finite set of certain clauses, and ∆ is
a finite set of uncertain clauses. Given a program P = (Π,∆), a set A ⊆ ∆
of uncertain clauses is an argument for a goal Q with necessity degree α > 0,
denoted 〈A,Q, α〉, iff: (i) Π ∪ A ` (Q,α); (ii) Π ∪ A is non-contradictory, and
(iii) there is no A1 ⊂ A such that Π ∪ A1 ` (Q, β), β > 0. Let 〈A, Q, α〉 and
〈S, R, β〉 be two arguments, 〈S, R, β〉 is a subargument of 〈A, Q, α〉 iff S ⊆ A.

Conflict among arguments is formalized by the notions of counterargument
and defeat. Let P be a program, and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two
arguments in P. We say that 〈A1, Q1, α1〉 counterargues 〈A2, Q2, α2〉 iff there
exists a subargument (called disagreement subargument) 〈S, Q, β〉 of 〈A2, Q2, α2〉
such that Π ∪ {(Q1, α1), (Q, β)} is contradictory. The literal (Q, β) is called
disagreement literal.

Defeat among arguments involves the consideration of preference criteria de-
fined on the set of arguments. The criterion applied here will be defined on the
basis of necessity measures associated with arguments. Let P be a program,
and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two arguments in P. We will say that
〈A1, Q1, α1〉 is a defeater for 〈A2, Q2, α2〉 iff 〈A1, Q1, α1〉 counterargues argu-
ment 〈A2, Q2, α2〉 with disagreement subargument 〈A, Q, α〉, with α1 ≥ α. If
α1 > α then 〈A1, Q1, α1〉 is called a proper defeater, otherwise (α1 = α) it is
called a blocking defeater. Notice that we digress from the original P-DeLP for-
malism in that (i) we include facts in the support of arguments and (ii) facts are
allowed to have a weight different than one (so allowing them to be considered
as presumptions).

Example 3. Consider the possibilistic program P3 in Fig. 2 that describes the
criteria for deciding whether performing or not a surgical procedure depending
on several factors such as severity, availability of a doctor, affordability, etc.
Exactly 21 arguments can be built from this knowledge base. We only show the
ones that coincide with those presented in Ex. 1 (for clarity, clauses are separated
by semicolons):

– 〈A6,∼canAfford(one million), 0.9〉 whereA6 =
{

(∼canAfford(one million), 0.9)
}

– 〈A16,∼performSurgery(heartDisease), 0.9〉 where

A16 =



(∼performSurgery(heartDisease)← acuteDisease(heartDisease),
performs(john, heartDisease), doctor(john), fee(john, one million),
∼canAfford(one million), 1.0);
(acuteDisease(heartDisease)← disease(heartDisease),
urgent(heartDisease), 1.0);
(disease(heartDisease), 1.0); (urgent(heartDisease), 1.0);
(performs(john, heartDisease), 1.0); (doctor(john), 1.0);
(fee(john, one million), 1.0); (∼canAfford(one million), 0.9)


– 〈A19, performSurgery(heartDisease), 0.7〉 where
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A19 =


(performSurgery(heartDisease)← acuteDisease(heartDisease), 0.7);
(acuteDisease(heartDisease)← disease(heartDisease),
urgent(heartDisease), 1.0);
(disease(heartDisease), 1.0); (urgent(heartDisease), 1.0)


– 〈A20, performSurgery(heartDisease), 0.8〉 where

A20 =



(performSurgery(heartDisease)← acuteDisease(heartDisease),
performs(john, heartDisease), expertDoctor(john), 0.8);
(acuteDisease(heartDisease)← disease(heartDisease),
urgent(heartDisease), 1.0); (disease(heartDisease), 1.0);
(urgent(heartDisease), 1.0); (performs(john, heartDisease), 1.0);
(expertDoctor(john)← doctor(john), expert(john), 1.0);
(doctor(john), 1.0); (expert(john), 0.8)


– 〈A21, canAfford(one million), 1.0〉 where

A21 =


(canAfford(one million)← loanFromBank(one million, city bank), 1.0);
(loanFromBank(one million, city bank)← bank(city bank),
loan(one million, city bank), 1.0);
(bank(city bank), 1.0); (loan(one million, city bank), 1.0)


The attacks among these arguments are exactly those presented in Fig. 1. Notice
that the traditional approach to PDeLP, facts are not considered part of argu-
ments as they are not meant to be attacked. We include them in arguments as a
notation abuse. Also notice that here the attacks are made into final conclusions
(thus they are direct attacks). Nonetheless the reasoning framework presented
here and the application we built also allow for modeling attacks into premises
(i.e. indirect attacks).

Rules:
(∼performSurgery(D) ← disease(D),∼urgent(D), 0.6)

(performSurgery(D) ← acuteDisease(D), 0.7)
(acuteDisease(D) ← disease(D), urgent(D), 1.0)

(∼performSurgery(D) ← acuteDisease(D), performs(M,D), doctor(M),
fee(M,S),∼canAfford(S), 1.0)

(performSurgery(D) ← acuteDisease(D), performs(M,D), expertDoctor(M), 0.8)
(expertDoctor(M) ← doctor(M), expert(M), 1.0)

(canAfford(L) ← loanFromBank(L,B), 1.0)
(loanFromBank(L,B) ← bank(B), loan(L,B), 1.0)

Facts and presumptions:
(disease(heartDisease), 1.0) (urgent(heartDisease), 1.0)

(doctor(john), 1.0) (expert(john), 0.8)
(fee(john, one million), 1.0) (∼canAfford(one million), 0.9)

(performs(john, heartDisease), 1.0) (disease(mole), 1.0)
(doctor(peter), 1.0) (∼urgent(mole), 0.8)

(performs(peter ,mole), 1.0) (bank(city bank), 1.0)
(loan(one million, city bank), 1.0)

Fig. 2. Possibilistic defeasible logic program for deciding a surgery

2.3 Accrual of Arguments

Now we deal with the problem of accruing arguments. Our approach relies in pre-
vious work of Gómez Lucero et al. [11] adapting their approach. Gómez Lucero
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et al. model accrual of arguments in a possibilistic setting where, given different
arguments supporting the same conclusion, they are able to accumulate their
strength in terms of possibilistic values. For this, they define the notion of ac-
crued structure whose necessity degree is computed in terms of two mutually
recursive functions: f+

Φ (·) (the accruing function) and fMP
Φ (·) (that propagates

necessity degrees). The latter is parameterized w.r.t. a user-defined function
ACC that supports non-depreciation (i.e. accruing arguments results in a ne-
cessity degree no lower than any single argument involved in the accrual) and
maximality (i.e. accrual means total certainty only if there is an argument with
necessity degree 1). We recall the notion of argument accrual as interpreted
by [11]:

Let P be a P-DeLP program and let Ω be a set of arguments in P support-
ing the same conclusion H, i.e. Ω = {〈A1, H, α1〉, . . . , 〈An, H, αn〉}. The accrued
structure ASH for H is a 3-uple [Φ,H, α], where Φ = A1 ∪ . . . ∪ An and α is
obtained as follows. Let Q be a literal in Φ and let (ϕ1, β1), . . . , (ϕn, βn) be all the
weighted clauses in Φ with headQ, then f+

Φ (Q) = ACC(fMP
Φ (ϕ1), . . . , fMP

Φ (ϕn)).
Let (ϕ, β) be a weighted clause in Φ, whenever ϕ is a fact Q then fMP

Φ (ϕ) = β
but if ϕ = Q ← P1, . . . , Pn then fMP

Φ (ϕ) = min(f+
Φ (P1), . . . , f+

Φ (Pn)). ACC
stands for the one-complement accrual: ACC(α1, . . . , αn) = 1−

∏n
i=1 (1− αi).

Given [Φ,H, α] and [Θ,K, γ], [Θ,K, γ] is an accrued substructure if Θ ⊆
Φ. Also [Θ,K, γ] is a complete accrued substructure of [Φ,H, α] iff for any
other accrued substructure [Θ′,K, γ′] of [Φ,H, α] it holds that Θ′ ⊂ Θ. We
say [Ψ,K, β] attacks [Φ,H, α] at literal H ′ iff there is a complete accrued sub-
structure [Φ′, H ′, α′] of [Φ,H, α] such that K = H ′ and β > α′ (· stands for the
complement operator where P is ∼P and ∼P is P ).

Let P be a possibilistic logic program. Let Accruals(P) be the set of complete
accrued structures of P. Let ASF(P) = (Accruals(P), attacks) be the argumen-
tation framework induced by the accruals of P where attacks ⊆ Accruals(P)×
Accruals(P). The extension of P is defined as the grounded extension ofASF(P)
where attacks stands for the attack relation between complete accrued struc-
tures. Notice that the notions of both attack and valid conclusions of the system
presented here differ from those of [11], thus leading to a different behavior.

Example 4. Consider again the possibilistic program P3. From this program, a
total of 20 accrued structures can be built. We show the more relevant ones
according to Ex. 3. The following complete accrued structures can be com-
puted from P3: AS2 = [A6,∼ canAfford(one million), 0.9], AS5 = [A16,∼
performSurgery(heartDisease), 0.9],AS9 = [A21, canAfford(one million), 1.0] and
AS15 = [A19 ∪ A20, performSurgery(heartDisease), 0.94] where arguments A6,
A16, A19, A20 and A21 were already introduced in Ex. 3. We show AS15 in Fig. 3
in abbreviated form for space reasons. Notice that the two leftmost branches of
AS5 stands for a sub-structure for A19 and two rightmost stands for A20. The
relevant part of the argumentation framework with accrual is presented in Fig. 4.
In this case, AS15 attacks AS5 and AS9 attacks AS2. Accordingly, AS9 and
AS15 are included in the grounded extension of ASF(P3) but AS2 and AS5 are
excluded.
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pf(hd)0.94

ad(hd)1.0

di(hd)1.0 u(hd)1.0

p(john, hd)1.0 ed(john)0.8

d(john)1.0 e(john)0.8

ad(hd)1.0

di(hd)1.0 u(hd)1.0

Fig. 3. Accrued structure AS15 for supporting the decision of performing the surgery
for heart disease. Nomenclature: d stands for doctor , u stands for urgent , di stands for
disease, hd stands for heartDisease, e stands for expert , ed stands for expertDoctor , ad
stands for acuteDisease, ps stands for performSurgery , and p stands for performs.

AS5

AS15

AS2

AS9

Fig. 4. Abstract argumentation framework ASF(P3) of Ex. 4

3 A Prototype Implementation for an Argumentative
Reasoner Using Dung-Style Argumentation

Here we explain the Java-based implementation we developed to enact the rea-
soning framework presented above.

3.1 Computing Grounded Extensions for Possibilistic Logic
Programs

As shown above, computing the accepted arguments emerging from a program
is a complex process. We review the algorithmic details of the approach used in
our implementation here.
Step 1: Propositionalization of the possibilistic program. Given a program, all the
transposes of strict rules are composed (when indicated by the user) and then
all the possible propositional enumerations of the rules are generated.
Step 2: Computation of arguments. The set of arguments that can be derived
from the propositional program is built inductively from facts and presump-
tions considering the rules of the program as derivation rules until a fix-point is
reached. Checking for internal consistency in argument construction is optional
due to its exponential complexity in the size of the argument.
Step 3: Computing attacks between arguments. For creating the argumenta-
tion framework, it requires to create a directed graph whose vertices are ar-
guments and its directed edges represent attacks between pairs of arguments
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(see Sect. 2.1). Discovering the edges requires iterating over every pair of ar-
guments. Whenever the conclusion of an argument contradicts the conclusion
of another argument or some subargument and its weight is greater or equal
than the weight of the other argument, then an attack has been found and the
subargument is the point of attack.
Step 4: Computing the grounded extension. The algorithm based on the topolog-
ical sort explained in Sect. 2.1 is run on the directed graph. This requires finding
all the roots of the graph (i.e. vertices with null incidence degree), printing these
vertexes, deleting them and its successors edges, and then repeating the process
until all of the vertices have been processed.

In Fig. 5, we show a visual presentation of an argumentation framework for
Ex. 1 and 3 as produced by the application. Arguments, attacks and points of
attack are shown.

Fig. 5. Visual presentation of an argumentation framework for Ex. 3

3.2 Elements for Personalizing the User Experience

Our approach to provide a text representation for possibilistic programs follows
the path marked by DeLP and ASPIC. Facts of the form (p(a), α) are represented
as “p(a) <- true α” and rules of the form (p(X) ← q1(X), . . . , qn(X), α) are
coded as “p(X) <- q1(X), ..., qn(X) α”. Besides, the strong negation of
p(X) is represented with ~p(X). In Fig. 6, we present the PDeLP-like script
for the program of Ex. 3.

This iteration of our system, besides introducing an Integrated Development
Environment in the form of an editor, both computation and visualization of ar-
guments, accrued structures and grounded extensions, and querying the status
of arguments and accrued structures, also introduces the capacity of customizing
the source code by using pragmas for specifying how the code should be inter-
preted and to define symbolic constants for the necessity degrees in rules (see
Fig. 7).

The pragmas included and the extended syntax in this version of the appli-
cation are:
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˜performSurgery(D) <- disease(D), ˜urgent(D) 0.6.

performSurgery(D) <- acuteDisease(D) 0.7.

acuteDisease(D) <- disease(D), urgent(D) 1.0.

˜performSurgery(D) <- acuteDisease(D), performs(M,D), doctor(M),

fee(M,S), ˜canAfford(S) 1.0.

performSurgery(D) <- acuteDisease(D), performs(M,D), expertDoctor(M) 0.8.

expertDoctor(M) <- doctor(M), expert(M) 1.0.

disease(heartDisease) <- true 1.0. urgent(heartDisease) <- true 1.0.

doctor(john) <- true 1.0. expert(john) <- true 0.8.

fee(john, one million) <- true 1.0.

˜canAfford(one million) <- true 0.9.

performs(john, heartDisease) <- true 1.0.

disease(mole) <- true 1.0. doctor(peter) <- true 1.0.

˜urgent(mole) <- true 0.8. performs(peter, mole) <- true 1.0.

canAfford(L) <- loanFromBank(L, B) 1.0.

loanFromBank(L, B) <- bank(B), loan(L, B) 1.0.

bank(city bank) <- true 1.0. loan(one million, city bank) <- true 1.0.

Fig. 6. Script for the possibilistic defeasible logic program for deciding a surgery

Fig. 7. User interface of desktop IDE of the engine for reasoning with possibly incon-
sistent possibilistic logic programs
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#priority NEVER 0.0
#priority SELDOM 0.1
#priority RARELY 0.2
#priority SOMETIMES 0.5
#priority NORMALLY 0.6
#priority USUALLY 0.7
#priority ALMOST_ALWAYS 0.9
#priority ALWAYS 1.0

#consistency-check off
#accrual off
#transposes off

~performSurger(D) <- disease(D), ~urgent(D) NORMALLY.
performSurgery(D) <- acuteDisease(D) USUALLY.
...

See how labels for necessity degrees are defined. Rules with degree equal to
NEVER are not included in computations. Compiler directives for consistency
check, use of accrual of arguments and computation of transposes of strict rules
are shown along with its application in rules, facts and presumptions. Its usage
can be seen in the screen capture provided in Fig. 7.

3.3 Empirical Evaluation

We now discuss some of the tests we have performed in order to test how our
application handles increasing demands in knowledge base size. The performance
of our system is affected mainly by (i) the fact that knowledge bases with ground
clauses are materialized in a bottom-up fashion (potentially building unusable
clauses due to the brute-force approach involved), and (ii) the system is imple-
mented in the JAVA programming language. Our tests were conducted on an
ASUS notebook having an Intel Core i7, 3.5GHz CPU, 8GB RAM, 1TB HDD,
and Windows 10. They involved the creation of programs (i) containing a sin-
gle argument of increasing size and (ii) containing a single argumentation line
composed of arguments formed by exactly one rule and one fact and that rule
attacks the previous argument in the line.

Building linear arguments. In the test case we devised, an argument of size n
can be derived from the program (which is built automatically by the test suite):
(p1(X) ← p2(X), 1.0), (p2(X) ← p3(X), 1.0), . . . , (pn−1(X) ← pn(X), 1.0),
(pn(a), 1.0). We can see that this argument has n − 1 subarguments that will
have relevance when building the argument base and each one will be a vertex
of the argumentation framework, thus increasing the execution time of the algo-
rithm for computing the grounded extension of the argumentation framework. In
Table 1, we show the results of the tests that we performed. We can see that the
performance of the algorithm for computing the extension of the argumentation
framework is reasonable but deriving the propositional program from a (simple)
program takes considerable time.

Building linear argumentation lines. In the test case we devised for argumen-
tation lines of size n, the test suite uses a pattern for building programs like
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Table 1. Running times for processing linear arguments

Number Source Time for Time elapsed
of file loading computing

rules size program extension
[Kilobytes] [seconds] [seconds]

10 0.22 0.066 0.004
20 0.43 0.120 0.007
30 0.64 0.227 0.008
100 2.15 1.237 0.020

1,000 23.20 107.354 5.751

the following. Let ε = 0.0001 then, the test program will be composed as:
(p1(X)←∼p2(X), 0.1), (∼p2(a), 0.1), (p2(X)←∼p3(X), 0.1+ ε), (∼p3(a), 0.1+
ε), (p3(X)←∼p4(X), 0.1+2ε), (∼p4(a), 0.1+2ε), . . . , (pn−1(X)←∼pn(X), 0.1+
nε), ∼p6(a), 0.1 + nε), (pn(a), 0.1 + (n+ 1)ε). Thus, each new argument defeats
the previous one in the argumentation line. In Table 2, we show the results that
we obtained when we tested our program. The results show that the program
can handle argumentation lines of size 10,000 but the generated graph cannot
be understood when it has a size of 1,000 nodes and that the MS Edge browser
is not able to display a graph of 10,000 nodes.

Table 2. Running times for processing linear argumentation lines

size time time elapsed Could size of size of
loading computing draw the the web source
program extension argumentation page for AF code
[seconds] [seconds] framework? [Kilobytes] [Kilobytes]

10 0.12 0.007 yes 3.308 0.58
20 0.172 0.011 yes 6.400 1.17
30 0.241 0.017 yes 9.495 1.77
100 0.778 0.058 yes 31.650 5.98

1,000 9.802 1.043 yes (with lag, totally unintelligible) 327.000 62.06
10,000 728.843 99.497 no (Edge did not respond in 10’) 3,378.000 641.00

4 Related Work

Classical reviews in argumentation systems are [3, 6, 7, 15]; we refer the reader
for details of different theoretical approaches in the field. Gómez [9] reviews a
comparison of an earlier version of this engine with the following related works [5,
16, 17] that also implement argumentation systems.

More recent implementations of argumentation systems include the following
works. DeLP [8] uses a language similar to the one presented here but without
the neccesity degrees. DeLP does not need necessity degrees for argument com-
parison because it uses generalized specificity. DeLP does not use transposes of
strict rules. Presumptions in DeLP have to be handled by a special formalization
known as PreDeLP [12].
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DAQAP [10] is a Web platform for Defeasible Argumentation Query Answer-
ing, which offers a visual interface that facilitates the analysis of the argumen-
tative process defined in the Defeasible Logic Programming (DeLP) formalism.
The tool presents graphs that show the interaction of the arguments generated
from a DeLP program; this is done in two different ways: the first focuses on the
structures obtained from the DeLP program, while the second presents the de-
feat relationships from the point of view of abstract argumentation frameworks,
with the possibility of calculating the extensions using Dung’s semantics. Using
all this data, the platform provides support for answering queries regarding the
states of literals of the input program. Our application has a similar function-
ality except that is desktop based and the language used is that of possibilistic
DeLP.

The TweetyProject (http://tweetyproject.org/) provides a comprehen-
sive collection of Java libraries for logical aspects of artificial intelligence and
knowledge representation. Defeasible Logic Programming, Our system has the
potential ability of being presented as a Java library once the classes that im-
plement the model of the application are selected.

5 Conclusions and Perspective

We have presented a report of the current state of our application that allows
editing possibilistic logic programs. The system computes the arguments, the
accrued structures and the grounded extension of the argumentation framework
induced from the program. The presented desktop application includes a lan-
guage that allows the user to customize the description of the knowledge base.
Performance tests show that the application is able to successfully handle lines
of argument on the order of 10,000 arguments, but its display in the user inter-
face is not satisfactory. As a future perspective, the construction of an API from
the source code is proposed to be able to use the functionality from other ap-
plications, the export of results to Argument Interchange Format and the use of
visualization techniques of large volumes of data to show the results computed
by the application. It is also of interest to include the computation of other
argument acceptance semantics and provide a command line tool.
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