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Abstract. Controller synthesis has been used in recent research to gen-
erate, from user specifications, correct-by-construction motion and task
plans for mobile robots. These plans are implemented by hybrid control
architectures allowing the robot to move and interact with complex en-
vironments. However, the different abstraction levels involved together
with the many components that must be developed for a fully functional
end-to-end system requires numerous design and methodology decisions,
specially when the robot strongly interacts with its environment. In this
paper, we present an end-to-end system design and implementation for
a mobile robot targeted at warehouse applications, that uses a proof-of-
concept approach in a simulated environment as a key step in the design
process. We demonstrate its capabilities in product rearrangement both
in simulated and real world scenarios.
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1 Introduction

Autonomous robots are increasingly being used in domestic and industrial envi-
ronments to perform a variety of different tasks ranging from home cleaning [27]
to car manufacturing in assembly lines [6]. For the past decades, the Robotics
and Automated Software Engineering community have extensively studied how
to specify and generate motion and task plans for these robots in order to interact
with complex reactive environments [5, 13, 14, 21–23].

The field of controller synthesis has provided a number of tools [8, 10, 29]
to automatically generate correct-by-construction plans for robot missions from
user-supplied specifications, that model the robot capabilities and its environ-
ment, and express the system’s goal. To implement these high-level and discrete
synthesised controllers in real-world applications several hybrid control architec-
tures have been proposed to interface with the low-level continuous control-loops
and actuators of the robot [3, 17, 21, 31].

As a result, numerous end-to-end implementations of mobile robots [13, 21]
have been developed allowing for a user to specify missions in some formal lan-
guage, such as Linear Temporal Logic, and synthesise a plan. This plan is then
translated into continuous movements and actions of the robot that guarantees to
satisfy the mission specification if a set of assumptions hold. However, there are
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many different methodological and design decisions that are made throughout
these implementations that have led to discussions about how these systems can
be designed [1, 7]. Missions that involve precise interaction with the environment
as in [21] may require abstracting the robot’s capabilities into control-modes [2],
while others focused on movement can be abstracted from the robot’s dynamics
as in [4]. Thus, the domain of application influences the way the hybrid system
may be designed.

In this work, we explore this topic for the particular scenario of mobile robots
for warehouse applications (e.g., [30]). Hybrid control implementations for this
scenario are, to the best of our knowledge, limited to simulated environments.
Because we consider this level of abstraction fails to capture the complexity
behind the robot-environment interactions to accommodate products in storage,
it is our goal to develop and implement a solution into a real-world scenario,
leveraging ideas from the design methodology presented in [19].

The main contributions of this work are: (1) an end-to-end hybrid robot sys-
tem design and construction suitable for warehouses tasks validated in simulated
and real-world mission scenarios, (2) a novel proof-of-concept approach in sim-
ulation during the design process of the hybrid control system to validate the
correct behaviour of the proposed solution.

We structure the paper as follows. Section 2 presents the preliminaries of
planning and hybrid controllers, and Section 3 shows the targeted warehouse
applications with our proposed actuation solution, for which we explain the
design approach in Section 4. We describe the implementation of the hybrid
control system in a simulated environment in Section 5 and later the changes we
made to construct and validate the real system in Section 6. Finally, Section 7
concludes.

2 Background

Here we present briefly the most important concepts of the planning formalism
we will use. In Section 5.1 we will show how this formalism may be used to
synthesise a discrete event controller for the domain of application of warehouse
missions.

Labelled Transition Systems (LTS). The dynamics of the interaction of a
robot with its environment will be modelled using LTS [15], which are automata
where transitions are labelled with controllable and uncontrollable events that
constitute the interactions of the modelled system with its environment. Complex
models can be constructed by parallel composition (||) of LTS.

Fluent Linear Temporal Logic (FLTL). In order to describe environment
assumptions and system goals we will use the formal language FLTL [11], a
variant of linear-time temporal logic that uses fluents to describe states over
sequences of actions. A fluent fl is defined by a set of events that make it true
(Set⊤), a set of events that make it false (Set⊥) and an initial value (v) true
(⊤) or false (⊥): fl = 〈Set⊤, Set⊥, v〉. We may omit set notation for singletons
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(a) (b)

Fig. 1: (a) Entry movement to accommodate the robot under the rack, (b) Exit
movement to load the product on the robot.

and use an action label ℓ for the fluent defined as fl = 〈ℓ,Act\ {ℓ},⊥〉. Thus, the
fluent ℓ is only true just after the occurrence of the action ℓ.

FLTL is defined similarly to propositional LTL but where a fluent holds at
a position i in a trace π based on the events occurring in π up to i. Temporal
connectives are interpreted as usual: ϕ, ϕ, and ϕ mean that ϕ eventually
holds, always holds, and holds on the next position of the trace, respectively.

Discrete Event Controller Synthesis. Given a LTS E with a set of con-
trollable actions L and a task specification G expressed in FLTL, the goal of
controller synthesis is to find an LTS C such that E‖C: (1) is deadlock free,
(2) C does not block any non-controlled actions, and (3) every trace of E‖C
satisfies G. When goals are restricted to Generalized Reactivity (1) (GR(1)) the
control problem can be solved in polynomial time [25]. GR(1) formulas are of
the form

∧n

i=1
ψi ⇒

∧m

i=1
ϕi where ψi and ϕi are Boolean combinations

of fluents that refer to assumptions and goals, respectively. In this paper we use
MTSA [8] for solving control problems.

Hybrid Controller. In robotics, the difference between the continuous vs.
discrete description of the real world, and the interaction between discrete event

controllers and robot actuators and sensors requires a non-trivial translation
task that is implemented in a hybrid control layer [3, 9].

3 Warehouse Applications

Recent developments in mobile robots have allowed them to carry out complex
manipulation tasks such as trash pickup [24], dishwasher unloading [27], amongst
others. Our focus is to include manipulation capabilities adequate for warehouse
applications, which involve multiple item-deliveries [30]. There are numerous
choices of manipulators, for instance, in [12] they use a 6 degree-of-freedom
(DOF) arm, while in [26] a 4-DOF arm is proposed. However, simpler actuator
solutions can be used to pick up objects of certain characteristics, such as the
two robot handling strategy in [20].

For the purpose of this paper a simple actuator capable of loading and un-
loading a predefined set of box-shaped products in a single level storage will suf-
fice. Our proposal of actuating mechanism consists of the combination of robot
mobility, a locking/unlocking mechanism and carefully designed racks. These
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racks consist of a pair of sliding surfaces that hold a single product on its sides,
allowing the product to slide forward and backwards as part of the grab/drop
mechanism. The top of the robot is designed to carry a single product thanks
the design of a locking mechanism. In order to load the box onto the robot, con-
trolled movements are used to carefully accommodate the robot under the rack
and the product resting there (see Fig. 1a), activating the locking mechanism
and with a reverse motion the product is mounted on the robot (see Fig. 1b).
The unload sequence consists in the robot pushing the product on to the rack,
unlocking and backing up, leaving the box on the rack.

4 Design methodology

Our design process is based on the work in [19], where an approach to construct-
ing hybrid control mobile robots is presented. This methodology starts with the
user providing a high-level mission specification from which plans can be auto-
matically synthesised for the desired domain of application of the robot. This
fixes an adequate abstraction level for which synthesis algorithms can compute a
plan in reasonable time (seconds to minutes). Setting an abstraction level means
that actions and events that must be implemented at the hybrid control layer
are fixed, and we must then design taking them into consideration. Following the
approach in [19] we would begin at this stage working on the real robot. How-
ever, we found that working first in a simulation environment can have many
advantages which we will briefly describe.

The use of a simulated environment allows for quick testing and modifica-
tion. This is particularly relevant in our target warehouse application since we
have a potentially complex interaction between the robot and its environment.
In the simulator we can evaluate the physical aspects of the robot and their
relation to the control algorithms that must be developed. This means that we
can test different feedback controllers and actuation policies to determine if they
are adequate for the manipulation tasks. Validating with a proof-of-concept ap-
proach the system in a simulator with a good level of detail lets us proceed with
confidence in the more costly real-world implementation.

The resulting design process is summarised in Fig. 2. Here we can see that
we follow the methodology in [19] but adding a simulation environment to pro-
duce and validate a simulated prototype as proof-of-concept. This allows us to
proceed into improving and adjusting the developed simulated components into
the equivalent real-world components (shown in dashed red lines).

5 Simulated Environment

For our simulating environment we chose the CoppeliaSim simulator, a powerful
tool which is widely used in robotic research for rigid body simulations [18].
Thanks to its architecture users can run custom code using LUA scripts that
can be programmed inside the simulator interface or by using a remote API that
can connect with code written on Python or C++. In this section we present
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Fig. 2: Design process of our mobile robot for warehouse applications.
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Fig. 3: (a) Environment cell discretization, and LTS models for (b) bidirectional
movement, (c) grab/release capabilities. Dashed and continuous lines denote
controllable and uncontrollable events, respectively.

the design and implementation of the robot using CoppeliaSim for the domain
of application defined in Section 3.

5.1 Synthesis of Warehouse Missions

The work in [30] shows how warehouse missions may be synthesised from a GR(1)
fragment of LTL specifications. However, we need to modify these specifications
to adapt them from state-based to event-based specifications that we will express
in a combination of FLTL and LTS, similarly as to how [19] adapts from [16].

The environment of this problem involves two main components: the move-
ment capabilities and the grab/release mechanism to interact with the boxes.
To produce a movement model we first discretize the working environment (see
Fig. 3a) in adjacent cells as in [30]. Due to how our grab and release mechanism
will work we include two different movement actions to go from one discrete
location to the next: go.i.j to go in front-first, and goR.i.j to go in backwards.
In Fig. 3b we show a portion of the LTS used to represent adjacent front and
backwards movement capabilities between cells, which can be easily extended to
the full discrete workspace as in [19].

To keep track of where the boxes are in the environment and to model the
grab and release actions we use a LTS as the one shown in Fig. 3c, where we
model that box A (initially on the robot) can be dropped in any cell from this set
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{2.2, 4.3, 5.1} with a drop.A.in.i.j action. Once dropped in a location it can only
be grabbed at the same location with grab.A.in.i.j . Note that, as in the movement
model, the initial state has to be set according to the initial conditions of the
system (state 0 represents that the box is on the robot, state 1 that it is at
location 2.2, etc).

The environment E is defined from the parallel composition of the LTS in
Fig. 3b and 3c. However, this behaviour needs to be further restricted to cor-
rectly represent the desired behaviour of the overall system. Thus we include
the following FLTL property to restrict that a box B must be at the respective
i.j location in order to be grabbed/released, where fluent At.i.j is defined as
At.i.j = 〈{at.i.j}, {go.m.n, goR.m.n : m.n ∈ D},⊥〉 for a cell discretization D:

∧

i.j∈{2.2,4.3,5.1}

[

(grab.B.in.i.j → At.i.j) ∧(drop.B.in.i.j → At.i.j)
]

(1)

We must also ensure that the robot will only access the shelves from a partic-
ular location, entering front-first and exiting backwards. Moreover, we will only
allow backwards movement when exiting from a shelf. For this we include the
following property for shelf-location f.g that must only be accessed from a.b,
assuming the shelves are in locations {2.2, 4.3, 5.1} and where fluent Last.i.j is
defined as Last.i.j = 〈{at.i.j}, {at.m.n : m.n ∈ D \ {i.j}},⊥〉:

∧

i.j∈D

[


(

goR.i.j → (Last.2.2 ∨ Last.4.3 ∨ Last.5.1)
)

∧
(

Last.f.g → ¬go.i.j
)

]

∧
∧

i.j∈D\{a.b}

[


(

Last.f.g → ¬goR.i.j
)

]

∧(go.f.g → Last.a.b)

(2)

Finally, for multiple boxes scenarios (e.g., two boxes A and B) we disal-
low entering a shelf in location f.g that already has a box with another box
on the robot, where the fluents are defined as Robot.has.A = 〈{grab.A.in.i.j :
i.j ∈ {2.2, 4.3, 5.1}}, {drop.A.in.i.j : i.j ∈ {2.2, 4.3, 5.1}},⊥〉 and Box.A.in.i.j =
〈{drop.A.in.i.j}, {grab.A.in.i.j},⊥〉:



(

go.f.g →
(

(¬Robot.has.A ∧ ¬Robot.has.B)∨

(Robot.has.A ∧ ¬Box.B.in.f.g) ∨ (Robot.has.B ∧ ¬Box.A.in.f.g)
)

) (3)

The environment E together with this set of FLTL specifications determine
the admissible behaviour of a robot in a warehouse scenario. Depending on the
mission, the user may include additional properties. For instance, in order to
organise the warehouse one can specify the final locations of two boxes A and B
with the following property: (Box.A.in.4.3) ∧ (Box.B.in.2.2). As we will
show in Section 5.4, a controller satisfying this specification will make use of the
available shelves to accommodate the boxes in the correct way.

5.2 Hybrid Control Layer Design

Once we can produce synthesised plans for our desired domain of application,
we proceed to building the necessary hybrid control components in order to
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translate the discrete actions in continuous signals for the robot actuators and
feedback-controllers. The hybrid architecture of our system is very similar to the
one shown in [19], so we will focus on describing the differences in the hybrid
modules we implemented. We build two hybrid modules: Motion control and
Grab control.

Motion control: Here we elaborated on the motion algorithms presented
in [19] to include simultaneous rotating and forwards/backwards movement.
This module takes as an input go.i.j or goR.i.j as a target position, and applies
a control algorithm to generate continuous movement that leads the robot to
this target location. For this we will use a combination of two controllers: one
for the robot’s orientation, by commanding the wheels in opposing directions
and one for advancing movements front- or back-facing, depending on whether
the robot is required to move forwards (go.i.j) or backwards (goR.i.j). Once a
new target position is defined two references are calculated: distance from the
target and the deviation angle from the correct orientation required to face the
target. The orientation controller will align the robot with the objective position.
Once the angle is within a given threshold, the forward/backward movement
controller moves the robot in a unidirectional motion. In order to achieve smooth
and robust trajectories, while moving forwards or backwards the orientation
controller is activated to ensure that the robot will keep facing the target in the
presence of disturbances. As shown in [19], an adequate low-cost mobile robot
configuration to achieve this movement is a two-wheel robot.

Grab control: As described in Section 3, once the robot is positioned under
a box A it has to lock or unlock the product from the robot. This module
interprets the grab (grab.A.in.i.j) and drop (drop.A.in.i.j) commands and sets the
positions of the lock system down to unload a product onto the rack or up to
load the product onto the robot.

5.3 Implementation in Simulated Environment

For realistic results we have to provide the simulator’s software with important
physical parameters such as weight, centre of mass and inertial moments. These
were obtained from a preliminary 3D CAD model for the mobile robot using
Solid Edge. This model was created for the following parameters: (a) two-wheel
drive with two caster wheels for stability (See Fig.4b), (b) enough room to layout
all the standard electronic components that will be required, (c) a flat top surface
of an adequate size to carry a box-shaped product of 15× 25× 5cm.

We then recreated the design of the robot in CoppeliaSim (see Fig. 4a) by
incorporating the physical parameters measured in the CAD model. For the
locking mechanism and wheels, revolute joints were used and configured for
motor and position control, respectively. For loading and unloading of products
we need to define the sliding surfaces on the racks and the locking mechanism
of the robot. As sliding surfaces we used same sized rollers at different heights
to both produce minimal movement effort from the robot when unloading by
offsetting the first roller to a lower height. To ensure that the product will stay
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Fig. 4: (a) Modelled robot (top view), (b) Wheel distribution, (c) Rack model.

(a)

III

1.0

1.1

1.2

1.3

2.0

2.1

2.2

2.3

3.0

3.1

3.2

3.3

4.05.06.0

6.1

6.2

6.3 5.3

5.2

5.1 4.1

4.2

4.3

(b)

Fig. 5: (a) Product loading sequence, (b) Validation in simulated environment.

in place once it’s on the rack, a small slope is created with the rollers. The
resulting rack model can be seen in Fig.4c.

The locking/unlocking mechanism consists of a fixed back stopper on the
robot and movable front servos (see Fig.4a). When the front servos are upwards,
the product will be restricted in its longitudinal movement and surface friction
between the product and the top of the robot will prevent it from moving side-
ways. When the front servos are in the down position all movements are only
restricted by surface friction.

Unloading of products can be achieved with the following steps: (1) the robot
approaches the rack with the product and the servos in the up position, and
begins pushing the box onto the rack with ease thanks to the first lower roller,
as shown in the top of Fig. 5a, (2) as the robot continues to push the box onto
the rack, the back stopper will prevent the box from falling off the back (see
middle of Fig. 5a), (3) once the box is completely inside the rack, the robot can
lower the servos and exit backwards, while the box stays in place thanks to a
small slope towards the end and given that the bottom of the product is now
higher than the top of the robot (see bottom of Fig. 5a). The steps to load a
product from the rack onto the robot are similar but in a reverse sequence with
the robot going in with the servos down and leaving with the servos lifted.

One of the advantages of working with a simulator is that we have direct
access to all the physical variables of the simulation so we can simplify the
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implementation process at this stage by not including sensors altogether. For a
proof-of-concept approach this is reasonable if we consider at all times how we
will measure each variable in the real world. For instance, the Motion control

algorithm requires continuous readings of the position and orientation of the
robot that can be obtained from an aerial view of the workspace.

We then proceeded to implement the angle and movement controllers re-
quired by the Motion control module, as well as the lock/unlock implementa-
tions of the Grab control module, in the simulator using LUA scripts. The rest
of the hybrid control architecture was implemented using the remote API in-
terface communicating with a custom Python code. This separation over two
programming languages was made to maximise re-usability of the code when
switching to the real world, as we will describe in Section 6.2. The lock/unlock
implementations can be achieved easily by commanding the respective servos to
two different target angles. To implement the more complex angle and movement
controllers we worked with similar feedback and open-loop controllers as in [19].

5.4 Validation in the Simulated Environment

For validation we will use the workspace partially shown in Fig. 5b, a 7× 7 grid-
partitioned environment. To evaluate the correct behaviour of the overall system
we considered a single-robot variant from the mission in [30]: accommodate two
products in their respective racks from the three available (I, II and III) as
shown in Fig. 5b. Controller-synthesis and simulations were run on a Intel i7-
8550U 1.80GHz CPU with 8GB RAM. The mission specification, Python codes,
CoppeliaSim models (loaded with custom LUA scripts) and mission video of the
simulated run can be found in [28].

The goal of the mission can be expressed with the FLTL formulas as in 5.1,
where boxes A and B must be accommodated in the racks in II and I at 5.1 and
2.2, respectively. The position of the racks and how they can be accessed (see
arrows in Fig. 5b) can modelled as shown in Section 5.1. For this specification, a
discrete-event controller was synthesised in less than 3 s. Once synthesised, the
simulation was started and the mobile robot proceeded to implement the task
plan, as shown in Fig. 5b.

The coloured dashed lines indicate the robot’s path as it completed the tasks.
The robot first goes to rack I (red path) and grabs the green box A through the
front-facing location 1.2. Then, it takes this box to position 2.2 and proceeds
to unload it onto rack II (blue path). Now the robot is free to grab another
product, so it goes to rack III (black path), loads box B and takes it to rack
I (orange path), achieving the goal of the mission. The coloured dots on the
figure represent the moment where the events go.i.j or goR.i.j were triggered.
The full mission duration was around 90 s. Note that all decisions (path taken,
which box to take first, etc) were determined by the synthesis algorithm which
is correct-by-construction regarding the specification.

From this simulation we can conclude that the movement precision of the
robot is adequate to perform grab and drop actions without any collision with
the rack, as well as that the rack’s design allows for satisfactory load and unload
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Fig. 6: (a) Robot modular design, (b) Camera sensing setup.

of boxes. Moreover, this experiment shows a correct execution of the complete
hybrid controller in a representative mission scenario for warehouse tasks. We
can thus proceed to build the system in the real world with more confidence on
the proposed solution.

6 Real World

In this section we will discuss all the challenges involved in a real world imple-
mentation, as well as details on the constructed platform.

6.1 Platform Design and Hardware

The mobile platform consists of three modules, as shown in Fig. 6a: the first is
the chassis of the robot, where the wheels (casters and driven) are mounted, the
second module is in the middle and holds all the electronic components, and the
third top module supports the box between the back stopper and the servos, as
part of the locking/unlocking mechanism. All the structural components of this
design were 3D-printed with a PLA polymer.

The electronics mounted on the robot (see top right of Fig. 6a) consist of:
an Arduino Uno where the feedback and open-loop controllers are programmed,
a Raspberry Pi 3B+ where the communication between a PC and Arduino is
made, a L298N H-bridge to command the driven wheels, a power converter for
the Raspberry Pi and an alternative converter for the rest of the electronic
components, two MG90S servos for the locking mechanism and a set of batteries
for the power supply of all the components

6.2 System Construction and Implementation

The implementation in the real world requires adjusting several of the compo-
nents that were developed in the simulator. The hybrid controller architecture,
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together with the control and planning algorithms may be the same, but they
must be now implemented between three different interfaces: an Arduino, the
Raspberry Pi, and an auxiliary PC.

The Arduino Uno is used to implement the feedback and open-loop con-
trollers that were implemented as LUA scripts in the CoppeliaSim simulation.
The auxiliary PC serves a similar purpose as that shown in [19], where in order to
locate the robot in the environment, aerial images are captured and processed in
this computer and later sent via Wi-Fi (see Fig. 6b) to the Raspberry Pi, which
acts as an intermediary between the PC and the Arduino. Since information used
by the continuous controllers at the Arduino level is extracted from images, the
measurements sample time is limited by the FPS of the aerial camera, which we
set to 20Hz. Controller synthesis and the implementation of the higher hybrid
levels could be done both in the Raspberry Pi or the PC, the latter being chosen
for our work with Python 3.7.7 as the programming language, where we reused
the Python code which interfaced with CoppeliaSim as described in Section 5.3.

Communication between the Arduino and the Raspberry Pi is done through
serial ports, where data such as the references of the feedback-controllers and the
measured parameters of the robot (angle and distance to the objective position)
are exchanged. This information is obtained from the aerial images using several
functions from the OpenCV Python library. The image processing consists in
identifying two different colour markers placed on the robot. This way we are
able to trace a vector between them and know the angle and position of the robot.
We do this by first implementing a mask over the original image to isolate the two
markers. Once these are identified, we can obtain their contours and centre (see
PC in Fig.6b). Finally, knowing the relative position between the two markers
and the robot’s centre we are able to determine its position and orientation in
the environment.

The control algorithms that worked in the simulator showed to be not as
robust as expected for real world implementation, giving oscillatory trajectories
not suitable for the drop and grab actions, where a precise movement to enter
the rack is required. For this reason we iterated over the implemented movement
algorithm, including a more sophisticated proportional and derivative controller
for the orientation.

6.3 Validation in the Real Environment

In this section we will validate the correct behaviour of the overall system by
running a similar mission to the one presented in Section 5.4. For this, we will use
the workspace shown in the top image in Fig. 7b, which consisted of a 2.5× 2m
environment partitioned in a 5 × 4 grid. Our goal is to accommodate boxes A
and B in racks II and I (see bottom image in Fig. 7b) at 4.0 and 0.0, respectively.
The mission was specified as in Section 5.4, and a discrete-event controller was
synthesised in less than 1 s. The video as well as the Python codes and task
specification of this mission are provided in [28].

We show in Fig. 7a the robot’s trajectory as it executed its mission. As in
the simulated validation, the coloured dashed lines indicate the robot’s path as
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II

(a) (b)

Fig. 7: (a) Aerial image with the robot’s path, (b) Top: Processed image with
grid partitioned environment, Bottom: Robot loading box in rack I.

it completed the task. The robot first goes to rack I (red path) and grabs the
box A. Then it proceeds to take this box to position 0.0 and proceeds to unload
it onto rack II (blue path) at 4.0 position. Now the robot goes to grab the box
B in rack III (black path) at 3.3 position and delivers it to rack I (green path)
at 0.0, achieving the specified task. The full mission duration was around 90 s.

From real world implementation we can conclude that the movement and
the locking mechanism of the robot are adequate and work correctly for the
precise movements required for loading and unloading of products on the racks.
Moreover, we validated the correct behaviour of the end-to-end system in a
representative task of warehouse scenarios.

7 Conclusions and Future Work

In this work we presented an end-to-end robot system that successfully accom-
plishes warehouse applications tasks, synthesised from from high-level specifi-
cations. For this, we proposed a design methodology, where we first worked in
a simulated environment to produce and later validate a simulated prototype
as a proof-of-concept. This allowed us to proceed with a detailed design for
the real-world implementation. Finally, we validated the correct behaviour of
our end-to-end system in a representative task of warehouse scenarios taken
from the literature, accommodating two products between three racks. In future
work, it would be interesting to analyse how the proposed platform scales with
multi-robot interactions in larger environments, as well as modifying the item
loading capabilities to support multiple levels of storage.
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