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Abstract. We present the first preliminary sunflower gene co-expression
network using public transcriptome data in Helianthus annuus and show its
utility in identifying and classifying uncharacterized genes involved in stress
response. The locus HanXRQChr09g0248321 was identified and linked to
several WRKY transcription factors in an enriched “stressed-response” module.
Moreover, the homologue in Arabidopsis thaliana was shown to be
differentially expressed in multiple “stress” conditions. We present our work
and validate our methodology to existing knowledge and show its capability to
identify/rank new candidates for crop breeding programs. Our future goal is to
link genetic variation with gene networks to understand phenotypic variability
in sunflower stress responses
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1 Introduction

Sunflower is one of the most important crops for the production of high-quality oil
and seeds consumed by both humans and livestock. Resistance or tolerance to stress is
a complex trait usually determined by many interacting loci. Over the past decade,
many groups have performed genomic and transcriptomic experiments in different
stages and conditions to understand the regulatory and genetic basis for many stress
related responses in plants. Knowledge gained from every experiment is key to a
better understanding of the biological process, yet integrating and analyzing in
conjunction different experiments can lead to a more systemic insight into the
complex mechanisms of sunflower response [1]. A popular approach in systems
biology is the construction and analysis of gene networks. Such networks are often
used for genome-wide representation of the complex functional organization of
biological systems [2]. Networks based on similarity in gene expression are called
gene co-expression networks and can be used to associate genes of unknown function
with biological processes, to prioritize candidate disease genes or to discern
transcriptional regulatory programs. In addition, networks constructed linking variant
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positions in the genome to gene expression, also known as eQTL analysis, can
provide information on variant loci which control specific gene expression [3].
Together these network analysis can provide new knowledge for the domain studied.
Transcriptomic meta-analysis aims at re-analysing existing data to derive novel
biological hypotheses, and is motivated by the public availability of a large number of
independent studies [4]. Here we construct a gene co-expression network to associate
genes of unknown function with specific biological processes in Helianthus annuus
and prioritize those involved in biotic stress resistance. Our long-term goals are to
produce and analyze gene co-expression and eQTL networks in different tissues and
conditions using all public transcriptomic data.

2 Methodology and Results

2.1 Data collection
To date, we have downloaded all available transcriptome datasets (39 in total) from
the Sequence Read Archive (NCBI), which comprised 1021 RNAseqs runs
corresponding to 49 tissue-age-treatment combinations, from 355 different genotypes
(~8 TB of raw data).

To perform differential co-expression studies, samples were grouped by tissue and
treatment according to the metadata. Our first group coined “photosynthetic tissue”
includes samples from whole stem to leaf, and from seedlings to mature plants. We
classified 693 samples as “control photosynthetic tissue” and 140 samples as “stressed
photosynthetic tissue”. Moreover, we also grouped root samples in control (125)
versus stressed (65). The “stress” definition, at this stage, included all biotic and
abiotic stresses. To check and validate our methods, we will begin focusing on the
larger group samples, specifically the “control photosynthetic tissue” where we can
contrast our results to existing previous knowledge.

2.2 Quality control and read mapping
Adaptors and low quality reads were removed with Trimmomatic [5]. We quantified
gene expression via Salmon [6] using the genome HanXRQ r1.2 as our reference to
produce 1 transcript per gene (coding and non-coding), totaling 58138 genes [7]. The
mapping rates ranged from 1% to 97%, with a median of 75% (sup. fig. 1). As
expected, samples from wild-cultivar species had lower mapping percentages, as well
as samples from infected tissues probably due to low efficiency in RNA extraction
from sunflowers.

2.3 Weighted Gene Co-expression Network Analysis
As a proof of concept, the first group analyzed were samples from healthy
photosynthetic tissues, initially a cohort of 693 samples. Samples with less than 3
million read counts were removed; then genes with less than 2 counts per million
(CPM) in ¾ of samples or more were filtered out, resulting in a subset of 15.865
genes, across 673 remaining samples.
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Moreover, outlier samples were filtered out in a recursive manner. Briefly, read
counts were normalized via variance stabilizing transformation; batch effects arising
from sample origin were adjusted via an empirical Bayesian method described by
Johnson et al. [8] and implemented in the R package sva [9]; normalized and adjusted
samples were hierarchically clustered using Pearson distance and visual outliers were
removed (in this case, corresponding to a Pearson distance greater than 0.45) (sup. fig.
2); after this, normalization and batch effect correction was re-run for the remaining
653 samples. In our first approach we performed a gene co-expression network
analysis (WGCNA) [10], using an unsigned correlation network with soft-threshold
power beta of 6, a minimum module size of 30, and a signed topological overlap
measure (TOM). Merge cut height, and deep split parameters were 0.25 and 2
respectively. This run resulted in 22 modules with a degree distribution that followed
a power law (R2=0.83, given by the soft-threshold 6), suggesting a scale free topology
as expected. Approximately 5.5% of total genes remained unconnected and the largest
module connected 19.5% of all genes. Moreover, we observed 82 “hub-genes” with a
scaled intramodular-connectivity (SIC) of 0.9 or greater, with module3 and module4
having the highest number of hub-genes, with 10 and 14 respectively.

2.4 Gene Ontology Analysis
In order to relate and integrate modules within a biological context, we performed an
enriched Gene Ontology (GO) term test on all 22 modules [11]. We observed that all
modules were enriched significantly with one or more GO terms (padj-value <0.05).
We first looked at the largest module, and found it contained enriched GO terms in
“growth”, “cell division”, “plant-type cell wall biogenesis”, and “microtubule-based
process” among others. In order to validate our network, we chose module20 which
contained 77 genes and was enriched for several interesting GOs, such as “response to
stress”, “response to fungus”, “regulation to response to stress”, and “signaling”
among others (sup. fig. 3). Remarkably this module contained 7 WRKY transcription
factors which are known to be involved in several stress response mechanisms [12].
Three out of seven WRKY are members of a module in a previous sunflower
gene-network study published by Moschen et al. [13]. Besides, 24 of the 77 genes are
also associated with the same module of their network. Interestingly, out of the 77
genes, 7 are of unknown/uncharacterized protein function yet conserved in plant
genome(s) and supported by expression data (annotation Badouin et al. [7]). From
these 7 genes HanXRQChr09g0248321 has a SIC=0.94, suggesting a main role in the
module (sup. fig. 4, crowned blue node). The homologous gene in Arabidopsis
thaliana AT4G29780 (blastX e-value ~0.0 and with 64% identity across a query
coverage of 57%) has been described to have differential expression in response to
several stress conditions [14]. Overall there are 45 interesting uncharacterized genes
which belong to a module and have a SIC greater than 0.75, which makes them
interesting candidates to follow up. We are currently examining these genes and other
modules in the network.
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3 Conclusions and Perspectives

In this preliminary work we established and validated our large-scale network
analysis and found promising evidence about the uncharacterized locus
HanXRQChr09g0248321 being involved in stress response. We are currently
analyzing other modules, particularly those with uncharacterized genes as hubs, as
well as constructing networks with the other major groups of samples. In addition, we
are working on eQTL analysis derived from these same sample groups. We have
successfully genotyped all samples with high accuracy and expect to run eQTL
analysis in the near future. Our final aim is to integrate all new knowledge coming
from new candidates from network analysis, eQTLs, previous candidate loci (e.g.
from GWAS) to stress response and integrate them to create a more systemic
approach to better understand stress response in sunflower. In addition, any links we
find between previous and new candidates will be followed up at the Sunflower
Genomics laboratory at IABIMO with molecular assays and variant identification in
local germplasm. Finally, we plan to implement a publicly available web page of
networks for the scientific community to explore.
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Supplementary Materials

Supplementary figure 1

Supplementary figure 1. Whisker boxplot of Salmon alignment rates of all 1021 downloaded
samples.
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Supplementary figure 2

Supplementary figure 2. Hierarchical clustering by Pearson distance of batch adjusted
samples corresponding to “healthy photosyntetic” group. Samples with Pear-son distance >
0.45 (red line) were excluded.
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Supplementary figure 3

Supplementary figure 3. GO enrichment analysis of module20 summarized and visualized
using REVIGO [1]. GO terms are represented by circles and are clustered according to
semantic similarities in the gene ontology. More general terms are represented by larger size
circles, and adjoining circles are most closely related. Circle color indicates the log10(p-value)
for the enrichment derived from the Fisher test. Terms with dispensability < 0.15 are labeled.

CAI, Congreso Argentino de Agroinformática

50JAIIO - CAI - ISSN: 2525-0949 - Página 110



8

Supplementary figure 4

Supplementary figure 4. Cytoscape network visualization of genes in module20 [2]. Node size
indicates intramodular connectivity (IMC), with crowned nodes having IMC>0.8. Node color
indicates whether the gene has a known function (red) or not (blue).
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