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Abstract. The objective of this work is to select machine learning classifiers for 

Network Intrusion Detection NIDS problems. The selection criterion is based 

upon the hyper-parameter variation, to evaluate and compare consistently the 

different models configuration. The models were trained and tested by cross-

validation sharing the same dataset partitions. The hyper-parameter search was 

performed in two ways, exhaustive and randomized upon the structure of the 

classifier to get feasible results. The performance result was tested for signifi-

cance according to the frequentist and Bayesian significance test. The Bayesian 

posterior distribution was further analyzed to extract information in support of 

the classifiers comparison. The selection of a machine learning classifier is not 

trivial and it heavily depends on the dataset and the problem of interest. In this 

experiment seven classes of machine learning classifiers were initially ana-

lyzed, from which only three classes were selected to perform cross-validation 

to get the final selection, Decision Tree, Random Forest, and Multilayer Percep-

tron Classifiers. This article explores a systematic and rigorous approach to as-

sess and select NIDS classifiers further than selecting the performance scores. 

Keywords: machine-learning classifiers, network intrusion detection, cross-

validation. 

1 Introduction 

At the core of a Network Intrusion Detection Systems NIDS there is a two-fold 

problem, feature selection and flow classification. Machine Learning ML offers effi-

cient solutions to both problems. This article is focused on the classifier selection and 

problems found during the ML classifiers comparison and performance evaluation. 

Section 2 presents a revision of the main concepts required to understand the arti-

cle development, Section 3 presents the methodology used in the classifiers compari-

son and selection, Section 4 present the results of the experiments, and Section 5 pre-

sents conclusions related to the experience of selecting classifiers in NIDS environ-

ment. 
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2 Antecedents 

2.1 NIDS type according to threat knowledge  

To understand the ways of detecting and classifying an attack it is important to 

know the types of common NIDS. 

NIDS type according to threat knowledge. Network threats can be classified as un-

known and well-known threats. The unknown threats are for example zero-day at-

tacks, undefined attacks and in general attacks not related to well-identified vectors. 

The unknown attacks are mainly identified by the flow behaviour, while well-known 

attacks are detected by the analysis of their specification, statistical description, and 

protocols behaviour under attack. The knowledge in these attacks allow to include 

them in black lists to be distributed in signature-based NIDS such as Snort and Suri-

cata [1], [2]. 

Machine Learning helps to create models representing a profile of normal activity 

to be compared with the network flow to detect deviations. Mishra et al. identify four 

IDS categories based on ML, derived from combining single classifier and multiple 

classifiers with all features and with a reduced set of features [3]. The multiple classi-

fier architecture allows for hierarchical intrusion detection with the aim of improving 

the detection rate in a similar way as a Decision Tree classify the data following a 

hierarchy of successive rules. 

NIDS in anomaly and network misuse detection. Unusual network behaviour is de-

tected by abnormal network patterns described by outliers and out of range data. In 

ML NIDS approach, the learning process starts registering normal flow to determine 

normal flow profile to be compared to network flow and detect deviations from nor-

mal flow. This approach has good detection performance but high number of false 

positives [4].  ML approaches use Autoencoders, considered as deep Neural Networks 

due to the high number of fully connected nodes, using un-supervised learning for 

learning the main flow characteristics [5], [6]. 

Well-Known Threats. Attacks in signature-based IDS are registered in a database 

and distributed as black-lists containing the main characteristics of historic attacks 

[7]. This commonly used method has a good detection rate of the attack included in 

the list, but fails to detect new attacks, so is the importance of keeping the black lists 

updated to include new attacks. 

Specification-based NIDS looks for protocol and services specification infringe-

ment, which might be an indication of network attack [8]. Examples of attack indica-

tors are IP source and destination address and port, flags, tags, and payload descrip-

tion, which may indicate network intrusion [9].  

Flow statistics analysis is used in IDS to detect variation in normal flow [4]. This 

method gives better results when applied in a particular point inside the perimeter 

such as a particular address or port, to avoid false positives. 

IDS based in the stateful protocol analysis, this analysis keep track of the protocol 

different states within a determined session, and look for anomalies in the session 

[10]. This method is time consuming for the network administrator. However it gives 

good understanding of network behaviour helping to discriminate false positive. All 
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these methods in the practice are combined for better performance of the network 

defense. 

Homoliak et al. compared three classifiers Decision Tree, Support Vector Machine 

SVM and Naïve Bayes for detecting adversarial obfuscation attacks in NIDS, basical-

ly tunneling and non-payload obfuscation [11]. This work used 194 features, and 

concluded that decision tree classifier was the most robust, while SVM achieves the 

worst performance. Ahmad et al compared four ML techniques for NIDS, the ma-

chines were SVM-Linear, SVM-RBF (Radial Basis Function), Random Forest, and 

Extreme Learning Machine ELM [12]. The conclusion of the experiment is that ELM 

outperforms the other approaches. The evaluation finishes with the accuracy and re-

call percentages. Ahmad et al. evaluated four ML techniques within SDN security 

environment [13]. The classifiers compared are SVM, Naïve Bayes, Decision Trees, 

and Logistic Regression. The results were that SVM outperform the other methods in 

terms of accuracy and precision. No further details about the number of features are 

given. In these articles and in many cases no further support to the experiment is giv-

en in the form of statistical significance test. 

A tutorial article Statistical comparison of models using grid search was provided 

with simulated 50 samples to illustrate the differences between the frequentist and 

Bayesian statistical analysis [14]. This article was an example to understand the dif-

ference between the two approaches and the importance of validating empirical re-

search. 

 

Revision of the main Machine Learning Classifiers used in this work 

Decision Tree Classifier DTC. A Decision Tree is a structure of nodes, branches and 

leaves for making successive decisions until find a final result. Decision Trees are 

used in classification in case of a discrete output variable, or in regression making 

prediction of continuous output. 

The tree structure is defined by supervised training using the information of the 

features in a sample [15]. This information is refined in successive branch partition-

ing, leading to a better adaptation of the tree to the training sample. The more refined 

the decisions the deeper the tree, and higher the risk of over-fitting, meaning the tree 

fails to generalize or to resolve different samples. The methods for avoiding over-

fitting are for example controlling the maximum tree depth by pruning the tree or 

using modeling constraints in the parameters. Nodes with few samples are avoided 

with constrains in the minimum number of samples at leaf node. In the extreme case, 

a node representing only one sample implies a highly specialized tree that adds little 

to the interpretation of the whole dataset. 

The algorithms in Decision Trees split the features considering the homogeneity or 

purity of the target class [16]. Gini impurity and Entropy are the measurements for 

splitting a node based on the homogeneity and information gain respectively [15]. 

Decision Trees are prone to bias in the output if the set of target class is unbal-

anced, that is the classes in the output are not equally represented. In this case the tree 

tends to better classify samples with target classes that are majority. To avoid this 

problem it is recommended to balance the dataset before constructing the tree model. 
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The structure of decision trees is highly sensitive to smaller changes in the input pa-

rameters, requiring sometimes building a completely new tree. 

Random Forest Classifier. Random forest is an ensemble of decision trees to classi-

fy or predict the class to which the input sample belongs. The final decision is by a 

voting system averaging the results or votes of individual decision trees [17]. The 

structure of the trees is determined by supervised learning. Trees are trained with a set 

of features and samples to find the related target class. 

The result of Random Forest tends to have high variance and slightly high bias 

[15]. More independent trees characteristic means lower variance in the results. Thus, 

the independence is achieved by introducing randomness in the process of modeling 

of trees in different ways. For instance, the structure of the decision trees is selected 

by training the trees with random sampling with replacement or bootstrap of the da-

taset [18].  Also randomness is introduced by selecting a random set of features per 

decision tree. The randomness leads to error cancellation in the result. This is 

achieved also by the voting system that allows for some erroneous results to be can-

celled out. The algorithm for voting could be by direct vote for a target class or by 

voting the probability of occurrence of the target class, as it is the alternative offered 

by the Scikit-learn Machine Learning Libraries for Python [19]. 

 

Multilayer Perceptron. Multilayer perceptron is a class of neural network where 

the neurons or nodes are connected following a feed-forward strategy: the nodes are 

connected to nodes in the next neurons layer, unlike recursive networks where the 

nodes can be connected to nodes in the same layer [20]. The objective of the network 

is to optimize some objective or cost function, which evaluates the network error 

resulting from comparing the calculated output and the expected output. The result of 

the objective function is back-propagated to change the network weights and bias in 

order to diminish or reduce the output error. This process is the learning process and it 

is supervised because given the input the output calculated is compared to the desired 

or expected given output to obtain the network error. The learning function stops 

when the error shows no further reduction in successive training steps. 

The activation function is the transforming function that transforms the input from 

the nodes to an output. The aggregated input from nodes weighted by the respective 

weight is transformed by the activation function to give the network output which is 

evaluated by the cost function or objective function which gives the network error that 

is back-propagated to the network nodes in order to change the nodes weights to re-

duce the output error and so on. 

The activation function is one of the hyper-parameters of the network to set up be-

fore training; the selection criterion could be for example the convergence error-time. 

During the training process, the network converge to some value of the objective 

function and further training steps do not improve the objective or cost function it is 

time to stop the network training.  
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3 Methodology and Design of Experiment 

Cross-validation for model selection 

The cross-validation method looks for training and testing the model with separate 

datasets to improve model generalization, while avoiding over-fitting that happens 

when using the same training data for testing. Generalization means the model has 

good performance even with data not used for training. Over-fitting means that a 

model has a very good performance with data used for training but poor performance 

with data used for testing and validating.  

The parameters of the model are selected during the training process. In the case of 

supervised learning it is possible to count with input-output pairs to verify the output 

of the trained model and derive the related error. This error is used as a feedback to 

adjust the parameters according to the selected training algorithm. In a second stage, 

the model performance is evaluated with the test set, and finally the validation of the 

model is evaluated by its capacity of making good predictions. 

Large amount of good quality of data is fundamental for training good models. As 

this is an ideal condition in real experiments the design of experiment offer alterna-

tives to draw train-test pairs from normal datasets. One of the simplest options is the 

random subsampling without replacement using the sample for training and the rest of 

data for testing, and repeating the process a number of times. Cross-validation is an 

alternative to get several train-test sets. The cross-validation method used in this ex-

periment is the Repeated Stratified k-Fold, where the dataset is partitioned in k-folds 

consisting each of training and testing sets. The stratified term refers to its proportion-

ality to the target class due to the unbalanced output, where the target classes are not 

equally represented. 

 

Cross-validation Problem and Design of Experiment  

Cross-validation may present overlapping of train-test sets. Overlapping means de-

pendence between train-test sets and therefore co-variation between samples. From 

the frequentist approach overlapping or dependency between samples implies incre-

ment of type I and II error. Recalling that type I and II errors are indicators of the 

quality of a test. Type I error is the probability of false positive cases, which in the 

context of network intrusion detection, is the probability of mistakenly classifying a 

sample as an attack when in fact there is normal flow. Conversely, Type II error is the 

probability of false negative cases, which is the probability of mistakenly failing to 

classify an attack considering it as a normal flow.  

Several experiments have been conducted with datasets of different size and five 

different statistical test with the aim of lowering the type I error [21]. The recommen-

dation was, if it is feasible, to perform cross-validation of 5 runs of 2 folds, to obtain 

the lowest type I error. Otherwise, in case the size of the dataset only allows for one 

run, performs McNemar’s test single train-test split and therefore there is no variance 

due to the repeated selection of train-test sets. Nadeau&Bengio identified the problem 

of high variance due to random selection of the train-test set that has not been consid-

ered in the previous work, and proposed a modified t-test to account for the random-

ness while still lowering type I and II errors [22]. Related to the cross-validation ex-
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periment design, Bouckaert et al. recommended to perform cross-validation repeating 

10 times a partition of 10 fold for better repeatability of the statistical test [23].  

Following these recommendations in this experiment has been used 10-folds times 

10-repetitions cross-validation, in addition of using a global variable random_state of 

zero, which implies a random seed common to all experiments, to assure repeatability. 

Significance Test 

In addition to the model performance evaluation it is important to assess the statis-

tical significance of the difference between models, to give validity to the empirical 

research, as it deals with data and its variability. There are two main approaches to 

statistical significance testing, the frequentist and Bayesian.  

The frequentist significance testing approach is based on Hypothesis testing, name-

ly the null and alternative hypotheses H0/Ha. The quality of the Hypotheses is evalu-

ated by Type I and Type II errors, or False Positive and Negative as mentioned be-

fore. In this experiment the Null Hypothesis NullH is: does Model 1 perform better 

than Model 2? 

To assess the type I and II error and therefore accept or reject the null hypothesis 

the frequentist approach uses the t-score, which has a traditional calculation and sev-

eral revisions to adapt to the type of experiment. The modified t-test in conjunction 

with the Student’s distribution is represented in Equation 1 [22], where xj is the dif-

ference of the models performance at fold j, and σ is the estimate of the variance at 

the related fold. 

t =
�
�∑ ������

�	��

���
���������

�                                                       (1) 

Nadeau&Bengio modification consisted on replacing the term 
�
� in the denominator 

by ��� + ���
�
�������  representing the relationship between test/train sets at a particular fold 

or run.  

The frequentist approach of this experiment is based on the Nadeau&Bengio modi-

fied t-test [22] and compared to the standard test, to corroborate the lack of consisten-

cy of the frequentist approach that heavily relies on the design of experiment, the way 

the NullH is posed and the statistical t-test used to prove the NullH. 

 

The Bayesian approach to significance test is also denominated Bayesian t-test for 

correlated observations. Corani&Benavoli designed a Bayesian t-test to account for 

the dependency between samples due to the cross-validation [24]. The Bayesian like-

lihood function is modelled by the mean difference of the performance parameter and 

a noise vector. This noise vector has the form of a Multivariate Normal Distribution 

Noise with mean zero, and covariance proportional to the correlation matrix of the 

samples. Therefore, the covariance matrix takes into account of the correlation due to 

cross-validation. The prior distribution is a Normal-Gamma distribution is the conju-

gate for the likelihood function. The posterior marginal distribution over the mean 

difference of performance parameters is a Student’s distribution. 

Bayesian posterior distribution gives consistent information about: a) probability of 

equivalence between two classifiers, b) probability of one classifier being better than 

other, c) confidence intervals [25]. 
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a) Probability of equivalence between two classifiers. By definition two classifi-

ers are considered practically equivalent if they differ in less than 1% in their perfor-

mance [26]. Therefore ROPE Region of Practical Equivalence is defined as the region 

of 1% within the two classifiers can be considered as equivalent. The Posterior distri-

bution over the ROPE interval gives the region of equivalence between the two classi-

fiers. 

b) Probability of one classifier being better than other. The area under the pos-

terior curve calculated in the interval from zero to infinity gives the probability of the 

performance of one classifier, compared with the area calculated in the interval from 

minus infinity to zero related to the second classifier. 

c) Confidence intervals. The posterior distribution allows calculating the confi-

dence intervals where the mean difference is found with 50%, 75% and 95% of prob-

ability. 

3.1 Experiment Setup 

The machine learning models were developed in Python 3.7.9 inside Kaggle Note-

books, a cloud computational environment based on Jupyter for code development. 

The localhost runs on Intel Core 7, graphic card Nvidia GeForce GT 635M, Windows 

10, 64-bit. The Machine Learning Libraries for Python are Scikit-learn [19].   

The dataset used was the network intrusion dataset NSL-KDD, a version with sep-

arate training and testing sets [27]. The training set has 125972 registers and 43 fea-

tures and includes the target class for supervised learning, and the test set has 22543 

registers and 43 data features. From the 43 data features were used four features: 

protocol type (3 categories), service (70 categories), flag (11 categories), attack type 

(23 categories). 

 

Hyper-parameter variation  

The cross-validation method can be used in combination with a parameter search 

method for selecting the parameters that give the best model performance. In this 

experiment two methods have been used, the exhaustive search, grid search, in the 

case of Decision Tree and Random Forest Classifiers, and randomized search in the 

case of Multilayer Perceptron Classifier. The use of randomized search instead of grid 

search was a compromise decision due to the time consuming of performing cross-

validation combined with grid search, particularly for neural networks. 

 

Decision Tree Hyper-parameter variation. In this article, four hyper-parameters 

were ranged for calibrating a Decision Tree Classifier: node splitting criterion, maxi-

mum number of features per tree, and minimum number of samples per leaf. The 

node splitting criterion can be selected between Gini and entropy measurement. The 

maximum number of features per tree can be selected between two methods sqrt(N), 

and log2(N), considering N the total number of features. The minimum number of 

samples per leaf is selected from a range between 10 and 50 in steps of 10. The max-

imum tree depth is selected from a range between 10 and 50 in steps of 10. 
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Random Forest Hyper-parameter variation. Three hyper-parameters were 

ranged for calibrating a Random Forest Classifier: number of estimators, and similar-

ly to Decision Tree Classifier, maximum number of features per tree, and minimum 

number of samples per leaf. The number of estimators is drawn from a range between 

10 and 50 in steps of 10. The maximum number of features per tree are selected be-

tween two methods sqrt(N), and log2(N), and the minimum number of samples per 

leaf is selected from a range between 10 and 50 in steps of 10.  

 

Multilayer Perceptron Classifier Hyper-parameter variation. Four hyper-

parameters were ranged for calibrating the Multi-Layer Perceptron Classifier: Size of 

hidden layer, activation function, alpha, and maximum number of iterations. Size of 

hidden layer was ranged between 50 and 200 in steps of 50. The activation function 

was selected from a set of Hyperbolic Tangent, Logistic Sigmoid Function and Recti-

fier Linear Unit. Alpha is the L2 Euclidean distance penalty and was selected from the 

set {0.0001, 0.001, 0.01, 0.1, 1, 10}. The maximum number of iterations range from 

50 to 200 in steps of 50. 

4 Result and Discussion 

Different machine learning classifiers have been considered as candidates for 

NIDS. Classifiers such as Principal Component Analysis and Support Vector Machine 

were considered because the reported reliability in the classification performance. 

However, the trial training and testing runs did not get feasible results even with re-

duced set of features, for example using only the three features of protocol type, TCP, 

UDP and ICMP. Classifiers such as k-Nearest Neighbors kNN, Gaussian-Naïve 

Bayes GNB, and Logistic Regression LR neither of them gave good classification 

performance even performing a dedicated search in the classification algorithm.  

The comparison of the accuracy distribution was useful as a preliminary analysis to 

understand the behaviour of the classifiers, before running a cross-validation method, 

which is time and resource demanding. Figure 1 a) shows the accuracy distribution 

for four classifiers, DTC, kNN, LR, and RFC, where the distribution of LR falls well 

below the rest of classifiers, misleading any possible comparison. 

Once removed the classifiers that did not compare it was possible to get more pre-

cise values for better comparison. Figure 1 b) shows the performance distribution, 

ROC_AUC, for three classifiers, DTC, RFC, and MLPC, of comparable performance 

and candidates for cross-validation and hyper-parameter search. 
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As described in Section 3, the cross-validation method used is the 10-times repeat-

ed 10-folds, where the dataset is randomly rearranged and divided into 10 folds or sets 

out of which one set is used for testing and the remaining are used for training. This 

process repeats 10 times for better replicability, and the evaluation metrics are aver-

aged across the runs to give an overall performance indicator. 

The Repeated Stratified k-fold method implies that the scores resulting from the 

cross-validation are not independent, showing co-variation in the same folds because 

they are trained with the same set of data. Figure 2 shows the cross-validation scores 

dependency from the test partition, where a great majority of scores present similar 

pattern per fold. 

 
 

The result of cross-validation gave a ranking of classifiers for Decision Tree, Ran-

dom Forest and Multilayer Perceptron. For the NIDS experiment the objective score 
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was the ROC_Auc. Table 1 shows the best classifiers, their parameters, and the mean 

test score.  

 
 

The similarity between classifiers performance shown in Table 1 is the result of a 

fine grained selection of models before running cross-validation. Firstly, classifiers 

with low performance were not considered for cross-validation, leaving out PCA, 

SVM, kNN, GNB and LR, as discussed in the beginning of Section 4. Therefore only 

DT, RFC, MLPC were selected as best candidates for comparing their performance. 

Several model variations are evaluated by the cross-validation method. The 10-times 

10-fold cross-validation, leads to 100 folds to run. Additionally, these runs are com-

bined with the search of the classifier hyper-parameters, resulting in 10000 fits for 

DTC, and 3200 fits for RFC, both with exhaustive search, and 1000 fits for MLP with 

randomized search. That means high competitive models with similar scores. Howev-

er, it is needed further evaluation of the quality of the experiments following statisti-

cal analysis to assess the validity of the results. 

Statistical significance test: Frequentist approach 

The statistical significance of the classifiers comparison, according to the fre-

quentist approach is in Table 2. The values are the corrected t- and p-values accord-

ing to Nadeau&Bengio’s t-test compared to the uncorrected ones. 

From the results in the Table 2 there is no conclusive acceptance of the Null Hy-

pothesis NullH “the first model performs better than the second”. Considering a sig-

nificance level of 95%, a p-value higher than 0.05 indicates acceptance of the NullH, 

the corrected p-value indicates acceptance of the NullH, contrary to the uncorrected 

value. This controversy has been mentioned in the literature criticizing the frequentist 

inference method and suggesting the Bayesian statistical inference as a more rigorous 

approach [28].  

 
Statistical significance test: Bayesian approach 

Bayesian posterior distribution over the mean difference of the classifier perfor-

mance is described in Table 3.  
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a) Equivalence in Performance. The posterior distribution over the ROPE inter-

val of +/-1% (-0.01, 0.01) gives the region of practically equivalence in their perfor-

mance between the two classifiers. The results give the probability of 0.769 for the 

DTC and RFC classifiers of being practically equivalent, and the probability of 0.803 

for the DTC and MLPC. That means, DTC and MLPC have higher probability of 

having equivalent performance sharing higher area under the curve. The particular 

model configurations are as follows: for DTC, the node splitting criterion is Gini, the 

minimum number of samples per leaf is 30, the maximum number of features per tree 

is sqrt(N), where N is the total number of features, and the maximum tree depth is 10; 

and for MLPC, the size of hidden layer is 100, the maximum number of iterations is 

50, the L2 Euclidean distance Alpha is 0.1, and the activation function is the Hyper-

bolic Tangent (tanh). 

b) Performance comparison. Comparing DTC and RFC, the probability of DTC 

classifier being better than RFC is 0.769, which is outperformed by the probability of 

RFC being better than DTC, which is 0.830. Comparing DTC and MLPC, the proba-

bility of DTC being better than MLPC is 0.803, which is higher than the probability 

of MLPC of being better than DTC, which is 0.238. Concluding that RFC outper-

forms the others classifiers in accordance with the ranked scores. 

c) Confidence intervals. The Table 3 c) shows the confidence intervals, where the 

mean difference is found, with 50%, 75% and 95% of probability respectively. 
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Classifiers Performance Results 

The classifiers performance is evaluated by the confusion matrix, ROC curve, and 

classification report. Tables 4, 5 and 6 summarize the performance of the best classi-

fiers selected by cross-validation.  

The confusion matrix gives the relation between the actual and predicted target 

class, resulting in True Positive-Negative TP-TN, and False Positive-Negative FP-FN 

values. The best performance is higher TP and TN cases, which are lighter colors in 

the heat map. Visually the three classifiers have similar performance, lighter colors in 

the diagonal for TP and TN cases. However, RFC shows the highest numbers of TP 

and TN, and lowest numbers of FP and FN. 

The Receiver Operating Characteristic ROC curve plots the rate of TPR vs FPR 

at different classification thresholds, and the Area under the ROC Curve AUC score is 

the aggregate value which can be calculated using the trapezoidal rule or using the 

trial scores. The trapezoidal rule has been used in this experiment for better accuracy 

of the indicator. ROC curves ratify the confusion matrix results, adding description of 

the relationship between TP and FP. The ROC curve for RFC has sharp response 

throughout the range, meaning higher TPR and lowest FPR, while the ROC curves for 

DT and MLPC show and increment of FPR to the expense of TPR. 
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The Classification report in Table 7 summarizes precision, recall, f1-score, and the 

supporting sample for the two target classes, normal flow and attack. Defining Preci-

sion as the relationship between TP/(TP+FP), which means how many selected cases 

are relevant; and Recall as TP/(TP+FN), which represents how many relevant cases 

are selected. The score F1 is defined as the weighted average of the precision and 

recall, with best value towards one [19]. The results in Table 7 show highest Preci-

sion, Recall, and F1-score for RFC to detect normal flow and attacks compared to 

DTC and MLPC. Despite the MLPC performance is closer to RFC, the weighted av-

erage of Precision is outperformed by RFC with 0.99. 

 

 

5 Conclusions 

The ML classifiers algorithms considered in this work for Network Intrusion De-

tection were Principal Component Analysis, Support Vector Machine, k-Nearest 

Neighbor, Gaussian-Naïve Bayes, Logistic Regression, Decision Tree, Random For-

est, and Multilayer Perceptron, to classify 4 features of the network flow, totalizing 

107 categories. From those, only DTC, RFC and MLPC gave better performance. 

To assess the classifier performance and select the best candidate, it has been ex-

plored the applicability of the cross-correlation method combined with hyper-

parameter search methods to further refine the range of available model options. 

However, cross-correlation becomes expensive as the dataset and number of parame-
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ters increases. To overcome this drawback, randomized search has been used in the 

hyper-parameter search for MLPC, which is the most expensive algorithm due to the 

complexity of network structure; preferring exhaustive search for DTC and RFC. As a 

result the experiment consisted of 14200 fits (10000 fits for DTC, 3200 fits for RFC, 

and 1000 fits for MLP), which means a high refined set of models, to give high per-

formance candidates with competitive results. 

The similarity in the performance scores of the models leads to the use of statistical 

validation methods to assess the quality of the experiments. The analysis by Bayesian 

Posterior Distribution has been proved to be rigorous and consistent method for statis-

tical significance test, supporting the selection of the RFC as the classifier with better 

performance in this particular case of classifiers in Network Intrusion Detection.   
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