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Abstract. In the context of COVID-19, contact tracing has shown its value as a tool for con-
tention of the pandemic. In addition to its paper based form, contact tracing can be carried
out in a more scalable and faster way by using digital apps. Mobile phones can record digital
signals emitted by communication and sensing technologies, enabling the identification of
risky contacts between users. Factors such as proximity, encounter duration, environment,
ventilation, and the use (or not) of protective measures contribute to the probability of con-
tagion. Estimation of these factors from the data collected by phones remains a challenge.
In this work in progress we describe some of the challenges of digital contact tracing, the
type of data that can be collected with mobile phones and focus particularly on the prob-
lem of proximity estimation using Bluetooth Low Energy (BLE) signals. Specifically, we use
machine learning models fed with different combinations of statistical features derived from
the BLE signal and study how improvements in accuracy can be obtained with respect to
reference models currently in use.
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1 Introduction

The COVID-19 pandemic has led to rethink how currently available technology can help fight it.
In particular, contact tracing, which consists in identifying close contacts that can be at risk of
being infected with the virus, can benefit from smartphones [1]. While contact tracing existed in
public health long before this pandemic, it has never been automated by relying on data collected
by smartphones rather than people [2]. The widespread use of smartphones around the world
enables a unique opportunity to implement contact tracing apps as a supplementary mean to
control the outbreak. By systematically collecting data from close contacts, these apps can achieve
unprecedented speed and coverage and therefore reduce the spread of the infection by alerting
potential infected individuals earlier than with traditional methods, even before symptoms onset [3–
5]. The concept has been widely implemented by public and private sectors around the world [6–9].
Google and Apple have released tracing services in their operating systems, enabling a true global
potential of the approach [10]. However, these apps have generated much discussion around their
key attributes, including system architecture, data management, privacy, security, and the actual
accuracy to estimate the risk of contacts [11–14]. In this context, two major challenges arise.
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On the one hand, it is not known with complete certainty to what extent various factors such as
proximity, duration, environment, ventilation, and the use of protective measures contribute to
the risk of a contact. On the other hand, there are limitations both in the process of collecting
data via smartphones and in the potential capacity of these data to provide accurate estimates of
the factors mentioned above. The ContactAr project is a research initiative funded by the 2020
COVID-19 Call from the National Ministry of Science and Technology in Argentina which aims
at exploring ways in which smartphone data can be used to estimate as accurately as possible
some of the factors that contribute to the risk of contagion. The rest of the work is organised as
follows. Section 2 discusses the process of obtaining different data through the use of smartphones
and their possible application for risk characterization of contacts. Section 3 describes the problem
of proximity estimation with emphasis on feature selection, model training and the experiments.
Finally, Section 4 describes the results obtained so far and the work currently in progress in the
framework of the ContactAr project.

2 Data collection

Modern cell phones can capture data from different sources including communication technolo-
gies (cellular network (2G/3G/4G), WiFi, Bluetooth), location technologies (GPS) and hard-
ware/software based sensors as described in Table 1. In order to collect these data in a systematic
way we developed a custom Android application which is available online in a public repository
4. This app allows us to develop experiment campaigns using different cell phone models, while
varying distance between phones, their position (horizontal, vertical), the environment (indoor,
outdoor), and the length of recording times.

The data obtained from our experiments allow us to estimate several of the factors that con-
tribute to the risk of infection associated with a close contact. However, as a first step, we decided
to put the focus on how Bluetooth Low Energy (BLE) data can be used to estimate proximity be-
tween two people (phones) and we leave as future work the incorporation of the sensor data from
Table 1 to investigate its impact to achieve improvements in risk estimation. The next section
explains the experiments that were performed and the specific BLE data that was used to feed the
machine learning models.

Sensor Common uses Risk estimation uses

light controlling screen brightness environment awareness (indoor/outdoor)

accelerometer motion detection (shake, tilt, etc) proximity

linear acceleration monitoring acceleration along a single axis proximity

gyroscope rotation detection (spin, turn, etc) proximity

gravity motion detection (shake, tilt, etc) proximity

magnetic field creating a compass proximity

rotation vector motion detection and rotation detection proximity

proximity phone position during a call social situation, proximity

activity start/end of activity (walking, in vehicle, etc) social situation, proximity, duration

step counter count steps social situation, proximity, duration
Table 1. Other sensors.

3 Proximity estimation

Distance is the most straightforward target variable used to estimate proximity between two ob-
jects. When two BLE devices communicate, at any particular moment, one of them takes the role

4 Contactar public repository: https://lcd-unc.github.io/
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Fig. 1. Variability of mean RSSI over different distances, environments and smartphone models obtained
in the second campaign.

of advertiser while the other assumes the role of listener. The former emits its signal at a certain
power level, while the latter observes this power attenuated in terms of a Received Signal Strength
Indicator (RSSI). Most current applications estimate distance by averaging RSSI values over a
period of time. However, RSSI values typically fluctuate in time due to factors such as obstacles
and reflections of particular environments, or due to different BLE chipsets and/or antenna config-
urations of specific device models. Figure 1 shows the variability of mean RSSI values (one dot per
experiment) over different distances, environments and smartphone models obtained in our second
campaign of experiments. In this work, we propose to incorporate other features, in addition to
the mean RSSI, to feed machine learning models in order to assess whether it is possible to obtain
accuracy improvements in distance estimation.

Specifically, 15 statistical features were derived from the normalized RSSI values: mean, trimmed
mean, median, first and third quartiles, minimum, maximum, standard deviation, range, interquar-
tile range, L1 distance to the mean ( 1

n

∑n
i=1 |xi−x|), L1 distance to the median ( 1

n

∑n
i=1 |xi− x̃|),

kurtosis, skewness, and the unique values count describing the series.
Due to the high dependency among many of these explanatory variables, it is not worth con-

sidering all possible combinations but only a subset of them. Taking into account the Pearson
correlation coefficient between every pair of these features plotted in the Fig. 2 heatmap, we de-
fined 3 different groups with strong within-group correlations:

– Measures of position (Group 1); mean, trimmed mean (tmean), median, first quartile (q1),
third quartile (q3), minimum (min) and maximum (max).

– Measures of dispersion (Group 2); standard deviation (std), range interquartile range
(iqr), mean L1 distance to the mean (dis1) and mean L1 distances to the median (dis2).

– Measures of shape (Group 3); skewness (skew), kurtosis (kur) and count (cnt).

Within-groups correlations for groups 1 and 2 are larger than between-groups correlations. For
instance, all within-group correlations for Group 1 are larger than 0.9 (except for corr(min−q3) =
0.88). Features in Group 3 are the less correlated. We evaluated combinations of 1, 2 and 3 features
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Fig. 2. Correlation between all different features.

in the following way: when using a unique feature it was possible to choose any feature of the
position group. When 2 features were used, it was possible to choose 1 position feature and 1
dispersion feature or 1 position feature and 1 shape feature. When 3 features were evaluated a
feature from each group was selected.

Training data were drawn from 2 campaigns of experiments. The first campaign considered 2
MOTO G(8) PLAY and 2 MOTOROLA ONE ZOOM mobile phones placed in horizontal positions
at different distances (in ranges from 0 to 4 meters) and in different environments (indoor, outdoor)
that mimic social gatherings where people leave their devices on a table. On the other hand, the
second campaign incorporated a greater diversity of mobile phone models by adding 4 SAMSUNG,
4 XIAOMI and 2 MOTOROLA devices in other environments and distances, and with different
horizontal and vertical orientations. Each experiment consisted of at least 2 phones on the same
environment which periodically emitted and scanned BLE beacons during an observation window
of 5 minutes in which the described features were computed. A total of 517 experiments were
carried out in the first campaign (248 indoor and 269 outdoor) at distances of 0.0, 0.5, 0.8, 1.0,
1.5, 1.8, 2.0, 3.0 and 4.0 meters between phones, and a total of 2844 experiments were carried out
in the second campaign (1300 indoor and 1544 outdoor) at distances of 0.0, 0.5, 1.0, 1.5, 1.75, 2.0,
2.5 and 3.0 meters as shown in Fig. 1.

Since the actual goal of contact tracing apps is to determine close contact rather than the
exact distance among devices, proximity can instead be treated as a binary classification problem.
Given the World Health Organization (WHO) defines a close contact as a distance within almost 2
meters, the categories were defined by close contact (for distances less than two meters) and non-
close contact (distances greater or equal than two meters). Then, we trained and evaluated three
different machine learning models: Logistic Regression (LR), Support Vector Machine (SVM) and
Random Forest (RF) using the feature selection method described above. In order to obtain correct
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estimates of the models’ accuracy, classes were balanced, erroneous values (generated by the hard-
ware in the data collection process) were removed and each model was trained and evaluated using
grid search with cross validation with KFold=5 and with 5 repetitions. Table 2 shows the hyper-
parameters values used in the grid search with cross validation process. Therefore, each accuracy
score was computed in the validation sets as the average of 25 values by using the Python scikit-
learn library. Furthermore, 20% of the data was kept out as test set to evaluate final model metrics.

Hyperparameters

LR [{’penalty’ : [’l2’], ’C’ : [1, 5, 10, 100]}]

SVM [{’kernel’ : [’rbf’], ’C’ : [1, 10, 100]}, {’kernel’ : [’poly’], ’degree’ : [2], ’C’ : [1, 10, 100]}]

RF [{’n estimators’ : [50, 100], ’max depth’ : [4, 6, 10, 14], ’criterion’ : [’entropy’]}]
Table 2. Hyperparameters optimization

4 Preliminary results and current work

First campaign results showed that LR models have the lowest performance, while RF ones
slightly outperform SVM models. All machine learning models outperform the benchmark used as
reference, even when a single feature is considered. Furthermore, a better accuracy can be obtained
in outdoor locations with respect to indoor ones. Indoor proximity estimation can benefit more
from the introduction of more features (up to 3 features) with respect to the outdoor estimation
case (up to 2 features). Accuracy can be increased about 10% when multiple features are considered
if the device is aware of its environment, reaching a performance of up to 83% in indoor spaces and
up to 91% in outdoor ones. These results encourages future contact tracing apps to integrate this
awareness not only to better assess the associated risk of a given environment but also to improve
the proximity accuracy. Figure 3 shows the confusion matrices obtained in the test set using 1, 2
and 3 features with the SVM model fit in indoor environments. The benefit of incorporating more
features both to increase accuracy and to achieve a better balance between false positives and false
negatives can be appreciated.

Second campaign results showed accuracy values around 71% for indoor environments and
66% for outdoor environments. Furthermore, no significant improvements in accuracy were ob-
served as more features are added. Additionally, a feature importance analysis was performed to
quantify how models improve accuracy by incorporating information about the environment, the

Fig. 3. Confusion matrices obtained in the test set using 1, 2 and 3 features with the SVM model fit in
indoor environments.
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position of the phones and phone models. This analysis showed that the most important context
feature was the phone position with around 2.5% of relevance, the second one was the environment
with around 2.2% of relevance and the last one was the phone model with less than 0.05%.

Overall, our analyses show that it is possible to use this technology to improve contact tracing
techniques and thus help containing the spread of the pandemic, provided that suitable accuracy
values are achieved. In our current work, we are addressing new challenges to further improve its
performance. Among others, these challenges include:

Environment awareness Given that awareness of the environment has shown its value in
estimating both distance and risk in general, we are investigating how other phone sensors can
be used to discriminate the environment. In particular, we were able to predict the environment
(indoor or outdoor) by using the light sensor with an accuracy of 87%. Furthermore, we claim
that this result could be further improved by the incorporation of other data potentially available
on the phone such as the number of GPS satellites at line of sight. This value is generally larger
in outdoor environments compared to indoors. Besides, voting schemes could be implemented if
phones advertise in their BLE messages (using a flag field) the type of environment they locally
estimate.

Differences due to devices With the second campaign, accuracy values decreased and en-
vironmental awareness contribution was lower mainly due to the presence of different cell phone
brands. We are interested in the nature of the effect of these factor on BLE signals and therefore
on model performances.
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